Návod na instalaci, obsluhu a údržbu kotle

THERM 14 KD.A, KDZ.A, KDZ5.A
THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A
THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A

Závěsný plynový kondenzační kotel
Návod na instalaci, obsluhu a údržbu kotle

THERM 14 KD.A, KDZ.A, KDZ5.A
THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A
THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A
<table>
<thead>
<tr>
<th>OBSAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Všeobecné informace</td>
</tr>
<tr>
<td>1.1 Použití</td>
</tr>
<tr>
<td>1.2 Podrobnosti o zařízení</td>
</tr>
<tr>
<td>1.2.1 Popis zařízení</td>
</tr>
<tr>
<td>1.2.2 Varianty provedení</td>
</tr>
<tr>
<td>1.2.3 Všeobecný popis</td>
</tr>
<tr>
<td>1.2.4 Zjednodušená hydraulická a funkční schéma (neslouží jako podklad pro montáž)</td>
</tr>
<tr>
<td>1.3 Bezpečnost provozu</td>
</tr>
<tr>
<td>1.4 Technické parametry</td>
</tr>
<tr>
<td>1.5 Sestava kotlů</td>
</tr>
<tr>
<td>2. Návod k obsluze</td>
</tr>
<tr>
<td>2.1 Ovládání a signalizace</td>
</tr>
<tr>
<td>2.1.1 Ovládací panel kotle</td>
</tr>
<tr>
<td>2.1.2 LCD displej</td>
</tr>
<tr>
<td>2.1.3 Informační menu</td>
</tr>
<tr>
<td>2.1.4 Chybové hlášení</td>
</tr>
<tr>
<td>2.2 Spuštění a vypnutí kotle</td>
</tr>
<tr>
<td>2.2.1 Uvedení do provozu</td>
</tr>
<tr>
<td>2.2.2 Odstavení kotle z provozu</td>
</tr>
<tr>
<td>2.3 Regulace</td>
</tr>
<tr>
<td>2.3.1 Provoz kotle bez prostorového termostratu či regulátoru</td>
</tr>
<tr>
<td>2.3.2 Provoz kotle s prostorovým termostratem</td>
</tr>
<tr>
<td>2.3.3 Provoz kotle s využitím vestavěných ekvitermních regulátorů</td>
</tr>
<tr>
<td>2.3.4 Provoz kotle s nadřazeným ekvitermín regulačním</td>
</tr>
<tr>
<td>2.3.5 Ohřev teplé vody (TV).</td>
</tr>
<tr>
<td>2.3.5.1 Zásobníkový ohřev TV - POPIS ČINNOSTI (kotle KDZA.A, KDS5.A, KDS10.A)</td>
</tr>
<tr>
<td>2.3.5.2 Průtokový ohřev TV – POPIS ČINNOSTI (kotle KDC.A)</td>
</tr>
<tr>
<td>2.3.6 Ohřev teplé vody v akumulačním zásobníku ve spojení se solárními panely</td>
</tr>
<tr>
<td>2.4 Vybrané ochranné funkce kotle</td>
</tr>
<tr>
<td>2.5 Údržba a servis</td>
</tr>
<tr>
<td>2.5.1 Dopouštění topného systému</td>
</tr>
<tr>
<td>2.6 Záruka a záruční podmínky</td>
</tr>
<tr>
<td>3. Návod k instalaci</td>
</tr>
<tr>
<td>3.1 Základní pokyny pro montáž kotle</td>
</tr>
<tr>
<td>3.2 Kompletnost dodávky</td>
</tr>
<tr>
<td>3.3 Umístění kotle</td>
</tr>
<tr>
<td>3.4 Zavěšení kotle</td>
</tr>
<tr>
<td>3.5 Připojení kotle na teplovodní systém</td>
</tr>
<tr>
<td>3.5.1 Rozměry a připojení</td>
</tr>
<tr>
<td>3.5.2 Grafy připojovacích přetlaků topné vody (na výstupu topné vody)</td>
</tr>
<tr>
<td>3.5.3 Expanzní nádoba</td>
</tr>
<tr>
<td>3.5.4 Použití nemrznoucích směsí</td>
</tr>
<tr>
<td>3.5.5 Pojistný ventil</td>
</tr>
<tr>
<td>3.6 Připojení kotle THERM 14, 17, 28 KDZ5.A a 17, 28 KDZ10.A na rozvod užitkové vody</td>
</tr>
<tr>
<td>3.7 Připojení kotle k rozvodu plynu</td>
</tr>
<tr>
<td>3.7.1 Připojení kotle THERM 14, 17, 28 KDZ5.A a 17, 28 KDZ10.A na rozvod užitkové vody</td>
</tr>
<tr>
<td>3.8 Připojení kotle k rozvodu plynu</td>
</tr>
<tr>
<td>3.8.1 Připojení kotle na užitkovou síť</td>
</tr>
<tr>
<td>3.8.2 Připojení kotle na prostorovou síť</td>
</tr>
<tr>
<td>3.9 Odvod kondenzátu</td>
</tr>
<tr>
<td>3.10 Řešení odtahu spalin</td>
</tr>
<tr>
<td>3.11 Propojení kotle se zásobníkem</td>
</tr>
<tr>
<td>3.12 Připojení kotle na elektrickou síť</td>
</tr>
<tr>
<td>3.12.1 Připojení pokojového termostratu</td>
</tr>
<tr>
<td>3.12.2 Připojení pokojového regulátoru s komunikací OpenTherm+</td>
</tr>
<tr>
<td>3.13 Varianty instalace kotle</td>
</tr>
<tr>
<td>4. Doplňující informace pro servis</td>
</tr>
<tr>
<td>4.1 Plynová armatura SIEMENS VGU 86 - nastavení</td>
</tr>
<tr>
<td>4.2 Elektrické schéma zapojení</td>
</tr>
<tr>
<td>5. Záznam o provedení záručních i pozáručních opravách a ročních kontrol</td>
</tr>
<tr>
<td>6. Informační listy výrobků</td>
</tr>
<tr>
<td>7. Osvědčení o jakosti a kompletnosti výrobku</td>
</tr>
</tbody>
</table>
1.1 Použití

Závěsné kondenzační kotle THERM jsou moderní plynové teplovodní kotle spalující zemní plyn či propan. Kotle jsou konstruovány jako spotřebiče využívající kondenzace vodní páry ve spalovacím procesu a vynikají vysokou účinností, minimálními emisemi do ovzduší a minimální spotřebou elektrické energie. Jejich provoz je hospodárný a nezatěžuje tak životní prostředí. Výkon kotle je plynule regulovaný v rozsahu cca 16 – 100 % a přizpůsobuje se automaticky okamžitým tepelným ztrátám objektu.

Variantně je kondenzační kotle THERM možné mimo vytápění využít navíc i k ohřevu teplé vody (dále TV) v nepřímotopném zásobníku externím či vestavěném, eventuálně průtokovým způsobem.

Kotel je určen pro uzavřené otopné soustavy vybavené expantní nádobou, nebo otevřenou expantní nádobou o min. výšce 8 m nad kotlem.

V případě, že se teplota okolního prostředí sníží pod bod mrazu při vypnutém kotli, je nutno u verzi KDZ5.A a KDZ10.A vypustit zásobník TV.

1.2 Podrobnosti o zařízení

1.2.1 Popis zařízení

- jedná se o závěsný kondenzační kotel, určený pro vytápění objektů s tepelnou ztráta do 14, 17 popř. 28 kW
- možnost ohřevu TV – průtokový ohřev či ohřev v nepřímotopném zásobníku
- provoz na zemní plyn či propan
- plně automatický provoz
- nízká spotřeba el. energie
- automatická plynulá modulace výkonu
- jednoduché ovládání kotle
- vysoký komfort
- vestavěná ekvitermní regulace
- možnost řízení nadřazeným pokojovým termostatem či inteligentním pokojovým regulátorem
- vysoká bezpečnost provozu
- použity bezpečnostní prvky kotle zabraňující přehřátí kotle, úniku spalin či plynu
- vestavěné energeticky úsporné oběhové čerpadlo
- pojistný ventil 3 bar
- ochranné funkce (protimrazová ochrana, ochrana čerpadla atd.)
- elektrické zapalování (úspora paliva)
- vestavěný automatický by-pass

1.2.2 Varianty provedení

THERM 14 KD.A, 17 KD.A, 28 KD.A
- uzavřená spalovací komora – tzv. provedení TURBO
- varianta určená pouze pro topení
- vzduch pro spalování nasáván z venkovního prostředí

THERM 14 KDZ.A, 17 KDZ.A, 28 KDZ.A
- uzavřená spalovací komora – tzv. provedení TURBO
- ořív TV v nepřímotopném externím zásobníku
- vzduch pro spalování nasáván z venkovního prostředí

THERM 28 KDC.A
- uzavřená spalovací komora – tzv. provedení TURBO
- ohřev TV průtokovým způsobem
- vzduch pro spalování nasáván z venkovního prostředí

- uzavřená spalovací komora – tzv. provedení TURBO
- ohřev TV v nerezovém nepřímotopném vestavěném zásobníku o objemu 55 l nebo 100 l
- vzduch pro spalování nasáván z venkovního prostředí
1.2.3 Všeobecný popis

Plynové kondenzační kotle THERM jsou sestaveny z nosného rámu, na němž jsou připevněny všechny provozní prvky kotle. V horní části kotle je umístěno kompaktní kondenzační těleso, které sdružuje spalovací komoru s hořákem a dvoukomorovým nerezovým výměníkem. Obal kondenzačního tělesa je osazena dvěma elektrodami (zapalovací a ionizační), trubkovým hořákem a tvarovaným potrubím pro přívod směsi plynu do kondenzačního tělesa. V oblasti kondenzačního tělesa je osazen odvzdušňovací ventil a teplotní sondou. Oznámená čelní stěna tělesa je osazena dvěma elektrodami (zapalovací a ionizační), trubkovým hořákem a tvarovaným potrubím pro přívod směsi plynu do kondenzačního tělesa.

Vhodný poměr směsi plynu v sevřeném a její promíchání zajišťuje mixer v součinnosti se speciální plynovou armaturou. Ta v sobě zahrnuje regulator tlaku plynu, dvě solenoidové blokovací ventily a poměrovou regulaci výstupního množství plynu s prvkyni pro mechanické nastavení. Nastavení souběhu poměrové regulace je možné jen za použití speciálního přístroje. Přísun spalovacího vzduchu včetně nuceného odtahu spalin je zajišťován zpravidla koaxiálním potrubím, které prochází horizontálně přes obvodovou zeď nebo vertikálně přes střešní konstrukci do volného prostoru. Potrubí je třeba instalovat tak, aby se (vzhledem k nízkým teplotám spalin) zaměřilo možnosti zamrzání koncovky odtahu. Vertikální potrubí musí být proto bezpodmínečně ukončeno střešním komínkem, horizontálně vedeno s mírným spádem od výdechu ke kotli. Přídavné kondenzační tělesa, potrubí odtahu spalin a přívodu vzduchu jsou pomocí hadic svedeny do zápachové uzávěrky, odkud je kondenzát vyveden mimo kotel.

U kotlů THERM 14, 17 a 28 KDZ.A je před výstupem topné vody z kotle osazen motorický trojcestný ventil pro rozdělení funkcí ohřevu TV a ohřevu topného systému.

Ovládací panel je celoplastový. Na přední straně jsou rozmístěny ovládací prvky (viz kapitola Návod k obsluze). Uvnitř je zabudována jednodesková automata HDIMS 20-TH20 pro řízení činotví kotle, řízení zabezpečení kotle i samotné regulace.

1.2.4 Zjednodušená hydraulická a funkční schématy (neslouží jako podklad pro montáž)

THERM 14 KD.A, 17 KD.A, 28 KD.A

1. Plynový ventil Siemens
2. Sdružená hydraulická armatura
3. Kondenzační těleso
4. Oběhové čerpadlo
5. Průtokový spínač
6. Expanzní nádoba topení
7. Pojistný ventil
8. Havarijní termostat
9. Teplotní sonda topení
10. Teplotní sonda kondenzátu
11. Plynový ventil Siemens
12. Sdružená hydraulická armatura
13. Kondenzační těleso
14. Oběhové čerpadlo
15. Průtokový spínač
16. Expanzní nádoba topení
17. Pojistný ventil
18. Havarijní termostat
19. Teplotní sonda topení
20. Teplotní sonda kondenzátu
21. Plynový ventil Siemens
22. Sdružená hydraulická armatura
23. Kondenzační těleso
24. Oběhové čerpadlo
25. Průtokový spínač
26. Expanzní nádoba topení
27. Pojistný ventil
28. Havarijní termostat
29. Teplotní sonda topení
30. Teplotní sonda kondenzátu
31. Plynový ventil Siemens
32. Sdružená hydraulická armatura
33. Kondenzační těleso
34. Oběhové čerpadlo
35. Průtokový spínač
36. Expanzní nádoba topení
37. Pojistný ventil
38. Havarijní termostat
39. Teplotní sonda topení
40. Teplotní sonda kondenzátu
41. Plynový ventil Siemens
42. Sdružená hydraulická armatura
43. Kondenzační těleso
44. Oběhové čerpadlo
45. Průtokový spínač
46. Expanzní nádoba topení
47. Pojistný ventil
48. Havarijní termostat
49. Teplotní sonda topení
50. Teplotní sonda kondenzátu
51. Plynový ventil Siemens
52. Sdružená hydraulická armatura
53. Kondenzační těleso
54. Oběhové čerpadlo
55. Průtokový spínač
56. Expanzní nádoba topení
57. Pojistný ventil
58. Havarijní termostat
59. Teplotní sonda topení
60. Teplotní sonda kondenzátu
THERM 14 KDZ.A, 17 KDZ.A, 28 KDZ.A

1. Plynový ventil Siemens
2. Trojcestný ventil
3. Kondenzační těleso
4. Oběhové čerpadlo
5. Sdružená hydraulická armatura
6. Expanzní nádoba topení
7. Pojistný ventil
8. Průtokový spínač
9. Havarijní termostat
10. Teplotní sonda topení

THERM 28 KDC.A

1. Plynový ventil Siemens
2. Trojcestný ventil
3. Kondenzační těleso
4. Oběhové čerpadlo
5. Sdružená hydraulická armatura
6. Expanzní nádoba topení
7. Pojistný ventil
8. Průtokový spínač
9. Havarijní termostat
10. Teplotní sonda topení
11. Deskový výměník
12. Průtokový spínač ohřevu TV

THERM 14 KDZ5.A, 17 KDZ5.A, 28 KDZ5.A

1. Plynový ventil Siemens
2. Trojcestný ventil
3. Kondenzační těleso
4. Oběhové čerpadlo
5. Sdružená hydraulická armatura
6. Expanzní nádoba topení
7. Pojistný ventil
8. Průtokový spínač
9. Havarijní termostat
10. Teplotní sonda topení
11. Zásobník TV
12. Čidlo termostatu zásobníku TV
13. Expanzní nádoba TV
1 - Plynový ventil Siemens
2 - Trojcestný ventil
3 - Kondenzační těleso
4 - Oběhové čerpadlo
5 - Sdružená hydraulická armatura
6 - Expanzní nádoba topení
7 - Pojistný ventil
8 - Průtokový spínač
9 - Havarijní termostat
10 - Teplotní sonda topení
11 - Zásobník TV
12 - Sonda termostatu zásobníku TV
13 - Expanzní nádoba TV

1.3 Bezpečnost provozu

Kotle THERM jsou vybaveny veškerými bezpečnostními, havarijními a ochrannými prvky, které zajišťují zcela bezpečný provoz kotle. Pokud i přesto např. z důvodu neodborného zásahu, nedodržování pravidelných kontrol a revizí kotle apod. dojde k nestandardnímu stavu, doporučujeme se zachovat takto:

Při zápachu plynu:
- uzavřít plynový kohout pod kotlem
- zajistit větrání místnosti (okna, dveře)
- nemanipulovat s elektrickými spínači
- uhasit případný otevřený oheň
- okamžitě přivolat servis (do servisní prohlídky nesmí být kotel provozován)

Při zápachu zplodin spalování:
- vypnout kotel
- zajistit větrání místnosti (okna, dveře)
- přivolat servis (do servisní prohlídky nesmí být kotel provozován)

Při požáru spotřebiče:
- uzavřít plynový kohout pod spotřebičem
- odpojit spotřebič od elektrické sítě
- uhasit oheň hasícím práškovým nebo sněhovým přístrojem
Technické parametry

<table>
<thead>
<tr>
<th>Technický popis</th>
<th>Jedn.</th>
<th>THERM 14 KD.A</th>
<th>THERM 14 KDZ.A</th>
<th>THERM 14 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palivo</td>
<td>-</td>
<td>zemní plyn</td>
<td>zemní plyn</td>
<td>zemní plyn</td>
</tr>
<tr>
<td>Kategorie spotřebiče</td>
<td>-</td>
<td>Iₚₜ</td>
<td>Iₚₜ</td>
<td>Iₚₜ</td>
</tr>
<tr>
<td>Jmenovitý tepelný příkon</td>
<td>kW</td>
<td>13,8</td>
<td>13,8</td>
<td>13,8</td>
</tr>
<tr>
<td>Minimální tepelný příkon</td>
<td>kW</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon na vytápění při</td>
<td>kW</td>
<td>13,4</td>
<td>13,4</td>
<td>13,4</td>
</tr>
<tr>
<td>Δt = 80/60 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δt = 50/30 °C</td>
<td>kW</td>
<td>14,6</td>
<td>14,6</td>
<td>14,6</td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon na ohřev TV</td>
<td>kW</td>
<td>-</td>
<td>13,4</td>
<td>13,4</td>
</tr>
<tr>
<td>Minimální tepelný výkon při</td>
<td>kW</td>
<td>2,6</td>
<td>2,6</td>
<td>2,6</td>
</tr>
<tr>
<td>Δt = 50/30 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δt = 80/60 °C</td>
<td>kW</td>
<td>2,4</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Vrtání clony plynu</td>
<td>mm</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>Přetlak plynu na vstupu spotřebiče</td>
<td>mbar</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Spotřeba plynu</td>
<td>m³.h⁻¹</td>
<td>0,26 – 1,46</td>
<td>0,26 – 1,46</td>
<td>0,26 – 1,46</td>
</tr>
<tr>
<td>Max. přetlak topného systému</td>
<td>bar</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Min. přetlak topného systému</td>
<td>bar</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Max. vstupní tlak TV</td>
<td>bar</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Min. vstupní tlak TV</td>
<td>bar</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
</tr>
<tr>
<td>Max. výstupní teplota topné vody</td>
<td>°C</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Průměr koaxiálního odtahu spalin</td>
<td>mm</td>
<td>60/100</td>
<td>60/100</td>
<td>60/100</td>
</tr>
<tr>
<td>Průměrná teplota spalin</td>
<td>°C</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hmotnostní průtok spalin</td>
<td>g.s⁻¹</td>
<td>1,6 – 10,7</td>
<td>1,6 – 10,7</td>
<td>1,6 – 10,7</td>
</tr>
<tr>
<td>Max. hlūčnost dle ČSN 01 16 03</td>
<td>dB</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Účinnost kotle</td>
<td>%</td>
<td>98 – 106</td>
<td>98 – 106</td>
<td>98 – 106</td>
</tr>
<tr>
<td>Třída NOₓ kotle</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Jmenovité napájecí napětí / frekvence</td>
<td>V / Hz</td>
<td>230 / 50 ~</td>
<td>230 / 50 ~</td>
<td>230 / 50 ~</td>
</tr>
<tr>
<td>Jmenovitý el. příkon</td>
<td>W</td>
<td>63,0 *</td>
<td>63,0 *</td>
<td>63,0 *</td>
</tr>
<tr>
<td>Jmenovitý proud pojistky spotřebiče</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stupeň krytí el. části</td>
<td>-</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
</tr>
<tr>
<td>Prostředí dle ČSN 33 20 00 – 3</td>
<td>-</td>
<td>základní AAS / ABS</td>
<td>základní AAS / ABS</td>
<td>základní AAS / ABS</td>
</tr>
<tr>
<td>Objem expanzomatu</td>
<td>l</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Plnící přetlak expanzomatu</td>
<td>bar</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Objem vestavěného zásobníku TV</td>
<td>l</td>
<td>-</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td>Udržovaná teplota TV v zásobníku</td>
<td>°C</td>
<td>-</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Objem expanzomatu TV</td>
<td>l</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Průtok odebrané TV (D - dle ČSN EN 625)</td>
<td>l.min⁻¹</td>
<td>-</td>
<td>-</td>
<td>13,8</td>
</tr>
<tr>
<td>Rozměry kotle: výška / šířka / hloubka</td>
<td>mm</td>
<td>725 / 430 / 300</td>
<td>725 / 430 / 300</td>
<td>725 / 800 / 390</td>
</tr>
<tr>
<td>Hmotnost kotle</td>
<td>kg</td>
<td>32</td>
<td>33</td>
<td>55</td>
</tr>
</tbody>
</table>

* Pomocná elektrická energie při částečném zatížení 48,0 W, pomocná elektrická energie při pohotovostním stavu 4,0 W.
<table>
<thead>
<tr>
<th>Technický popis</th>
<th>Jedn.</th>
<th>THERM 17 KD.A</th>
<th>THERM 17 KDZ.A</th>
<th>THERM 17 KDZS.A</th>
<th>THERM 17 KDZ10.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palivo</td>
<td>-</td>
<td>zemní plyn</td>
<td>zemní plyn</td>
<td>zemní plyn</td>
<td>zemní plyn</td>
</tr>
<tr>
<td>Kategorie spotřebiče</td>
<td>-</td>
<td>(I_{1E}, I_{2E})</td>
<td>(I_{1E}, I_{2E})</td>
<td>(I_{1E}, I_{2E})</td>
<td>(I_{1E}, I_{2E})</td>
</tr>
<tr>
<td>Jmenovitý tepelný příkon</td>
<td>kW</td>
<td>16,0</td>
<td>16,0</td>
<td>16,0</td>
<td>16,0</td>
</tr>
<tr>
<td>Minimální tepelný příkon</td>
<td>kW</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>Jmenovitý tepelný příkon (\Delta t = 80/60 , ^\circ C)</td>
<td>kW</td>
<td>15,7</td>
<td>15,7</td>
<td>15,7</td>
<td>15,7</td>
</tr>
<tr>
<td>Jmenovitý tepelný příkon (\Delta t = 50/30 , ^\circ C)</td>
<td>kW</td>
<td>17,0</td>
<td>17,0</td>
<td>17,0</td>
<td>17,0</td>
</tr>
<tr>
<td>Minimální tepelný příkon (\Delta t = 50/30 , ^\circ C)</td>
<td>kW</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Minimální tepelný příkon (\Delta t = 80/60 , ^\circ C)</td>
<td>kW</td>
<td>3,2</td>
<td>3,2</td>
<td>3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>Vrtání clony plynu</td>
<td>mm</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>Přetlak plynu na vstupu spotřebiče</td>
<td>mbar</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Spotřeba plynu</td>
<td>m³.h⁻¹</td>
<td>0,35 – 1,70</td>
<td>0,35 – 1,70</td>
<td>0,35 – 1,70</td>
<td>0,35 – 1,70</td>
</tr>
<tr>
<td>Max. přetlak topného systému</td>
<td>bar</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Min. přetlak topného systému</td>
<td>bar</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Max. vstupní tlak TV</td>
<td>bar</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Min. vstupní tlak TV</td>
<td>bar</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Max. výstupní teplota topné vody</td>
<td>°C</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Průměr koaxiálního odtahu spalin</td>
<td>mm</td>
<td>60/100</td>
<td>60/100</td>
<td>60/100</td>
<td>60/100</td>
</tr>
<tr>
<td>Průměrná teplota spalin</td>
<td>°C</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hmotnostní prá打通olin spalin</td>
<td>g.s⁻¹</td>
<td>2,1 – 9,8</td>
<td>2,1 – 9,8</td>
<td>2,1 – 9,8</td>
<td>2,1 – 9,8</td>
</tr>
<tr>
<td>Max. hlucnost dle ČSN 01 16 03</td>
<td>dB</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Třída NOx kotle</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Druh elektrického napájení</td>
<td>-</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>Jmenovité napájecí napětí / frekvence</td>
<td>V / Hz</td>
<td>230 / 50</td>
<td>230 / 50</td>
<td>230 / 50</td>
<td>230 / 50</td>
</tr>
<tr>
<td>Pomocná el. energie při jmenovitěm tepelném příkonu</td>
<td>W</td>
<td>63,7 *</td>
<td>63,7 *</td>
<td>63,7 *</td>
<td>63,7 *</td>
</tr>
<tr>
<td>Jmenovitý proud pojistky spotřebiče</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stupeň krytí el. částí</td>
<td>-</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
</tr>
<tr>
<td>Obem expanzomatu</td>
<td>l</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Plnící přetlak expanzomatu</td>
<td>bar</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obem vestavěného zásobníku TV</td>
<td>l</td>
<td>-</td>
<td>-</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>Udržovaná teplota TV v zásobníku</td>
<td>°C</td>
<td>-</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Obem expanzomatu TV</td>
<td>l</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Průtok odebírané TV (D - dle ČSN EN 625)</td>
<td>l.min⁻¹</td>
<td>-</td>
<td>-</td>
<td>14,2</td>
<td>15,6</td>
</tr>
<tr>
<td>Rozměry kotle: výška / šířka / hloubka</td>
<td>mm</td>
<td>725 / 430 / 300</td>
<td>725 / 430 / 300</td>
<td>725 / 800 / 390</td>
<td>1575 / 500 / 535</td>
</tr>
<tr>
<td>Hmotnost kotle</td>
<td>kg</td>
<td>38</td>
<td>39</td>
<td>61</td>
<td>103</td>
</tr>
</tbody>
</table>

* Pomocná elektrická energie při částečném zatížení 52,3 W, pomocná elektrická energie při pohotovostním stavu 4,4 W.
<table>
<thead>
<tr>
<th>Technický popis</th>
<th>Jedn.</th>
<th>THERM 28 KD.A</th>
<th>THERM 28 KDZ.A</th>
<th>THERM 28 KDC.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palivo</td>
<td>-</td>
<td>zemní plyn</td>
<td>propan</td>
<td>zemní plyn</td>
</tr>
<tr>
<td>Kategorie spotřebiče</td>
<td>-</td>
<td>l₁ř₁ l₁e</td>
<td>l₁p</td>
<td>l₁ř₁ l₁e</td>
</tr>
<tr>
<td>Jmenovitý tepelný příkon</td>
<td>kW</td>
<td>26,4</td>
<td>23,5</td>
<td>26,4</td>
</tr>
<tr>
<td>Minimální tepelný příkon</td>
<td>kW</td>
<td>6,2</td>
<td>6,2</td>
<td>6,2</td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon na vytápění při Δt = 80/60 °C</td>
<td>kW</td>
<td>26,0</td>
<td>23,0</td>
<td>26,0</td>
</tr>
<tr>
<td>Minimální tepelný výkon při Δt = 50/30 °C</td>
<td>kW</td>
<td>6,6</td>
<td>6,6</td>
<td>6,6</td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon na ohřev TV</td>
<td>kW</td>
<td>-</td>
<td>-</td>
<td>26,0</td>
</tr>
<tr>
<td>Vrtání clony plynu</td>
<td>mm</td>
<td>6,8</td>
<td>5,0</td>
<td>6,8</td>
</tr>
<tr>
<td>Přetlak plynu na vstupu spotřebiče</td>
<td>mbar</td>
<td>20</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>Spotřeba plynu</td>
<td>m³.h⁻¹</td>
<td>0,68 – 2,85</td>
<td>0,24 – 0,93</td>
<td>0,68 – 2,85</td>
</tr>
<tr>
<td>Max. přetlak topného systému</td>
<td>bar</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Min. přetlak topného systému</td>
<td>bar</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Max. vstupní tlak TV</td>
<td>bar</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Min. vstupní tlak TV</td>
<td>bar</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Max. výstupní teplota topné vody</td>
<td>°C</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Průměrná teplota spalin</td>
<td>°C</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hmotnostní průtok spalin</td>
<td>g.s⁻¹</td>
<td>3,1 – 14,7</td>
<td>3,4 – 17,0</td>
<td>3,1 – 14,7</td>
</tr>
<tr>
<td>Max. hlučnost dle ČSN 01 16 03</td>
<td>dB</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Třída NOx kotle</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Druh elektrického napájení</td>
<td>-</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>Jmenovité napájecí napětí / frekvence</td>
<td>V / Hz</td>
<td>230 / 50</td>
<td>230 / 50</td>
<td>230 / 50</td>
</tr>
<tr>
<td>Pomocná el. energie při jmenovitěm tepelném příkonu</td>
<td>W</td>
<td>66,1 *</td>
<td>66,1 *</td>
<td>66,1 *</td>
</tr>
<tr>
<td>Jmenovitý proud pojistky spotřebiče</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stupeň krytí el. částí</td>
<td>-</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
</tr>
<tr>
<td>Prostředí dle ČSN 33 20 00 – 3</td>
<td>-</td>
<td>základní AA5 / ABS</td>
<td>základní AA5 / ABS</td>
<td>základní AA5 / ABS</td>
</tr>
<tr>
<td>Objem expanzomatu</td>
<td>l</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Plnící přetlak expanzomatu</td>
<td>bar</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Průtok TV při Δt = 30 °C</td>
<td>l.min⁻¹</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rozměry kotle: výška / šířka / hloubka</td>
<td>mm</td>
<td>800 / 430 / 325</td>
<td>800 / 430 / 325</td>
<td>800 / 430 / 325</td>
</tr>
<tr>
<td>Hmotnost kotle</td>
<td>kg</td>
<td>45</td>
<td>45</td>
<td>46</td>
</tr>
</tbody>
</table>

* Pomocná elektrická energie při částečném zatížení 54,6 W, pomocná elektrická energie při pohotovostním stavu 4,4 W.
<table>
<thead>
<tr>
<th>Technický popis</th>
<th>Jedn.</th>
<th>THERM 28 KDZ5.A</th>
<th>THERM 28 KDZ10.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palivo</td>
<td>-</td>
<td>zemní plyn</td>
<td>propan</td>
</tr>
<tr>
<td>Kategorie spotřebiče</td>
<td>-</td>
<td>I_{ph}, I_{ph}</td>
<td>I_{ph}</td>
</tr>
<tr>
<td>Jmenovitý tepelný příkon</td>
<td>kW</td>
<td>26,4, 23,5</td>
<td>26,4, 23,5</td>
</tr>
<tr>
<td>Minimální tepelný příkon</td>
<td>kW</td>
<td>6,2</td>
<td>6,2</td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon na vytápění při $\Delta t = 80/60 °C$</td>
<td>kW</td>
<td>26,0</td>
<td>23,0</td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon na vytápění při $\Delta t = 50/30 °C$</td>
<td>kW</td>
<td>28,0</td>
<td>25,0</td>
</tr>
<tr>
<td>Minimální tepelný výkon při $\Delta t = 50/30 °C$</td>
<td>kW</td>
<td>6,6</td>
<td>6,6</td>
</tr>
<tr>
<td>Vrtání clony plynu</td>
<td>mm</td>
<td>6,8</td>
<td>5,0</td>
</tr>
<tr>
<td>Přetlak plynu na vstupu spotřebiče</td>
<td>mbar</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>Spotřeba plynu</td>
<td>$m^3.h^{-1}$</td>
<td>0,68 – 2,85</td>
<td>0,24 – 0,93</td>
</tr>
<tr>
<td>Max. přetlak topného systému</td>
<td>bar</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Min. přetlak topného systému</td>
<td>bar</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Max. vstupní tlak TV</td>
<td>bar</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Min. vstupní tlak TV</td>
<td>bar</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Max. výstupní teplota topné vody</td>
<td>°C</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Průměr koaxiálního odtahu spalin</td>
<td>mm</td>
<td>60/100</td>
<td>60/100</td>
</tr>
<tr>
<td>Průměrná teplota spalin</td>
<td>°C</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hmotnostní průtok spalin</td>
<td>g.s$^{-1}$</td>
<td>3,1 – 14,7</td>
<td>3,4 – 17,0</td>
</tr>
<tr>
<td>Max. hlučnost dle ČSN 01 16 03</td>
<td>dB</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Účinnost kotle</td>
<td>%</td>
<td>98 – 106</td>
<td>98 – 106</td>
</tr>
<tr>
<td>Druh elektrického napájení</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jmenovité napájecí napětí / frekvence</td>
<td>V / Hz</td>
<td>230 / 50</td>
<td>230 / 50</td>
</tr>
<tr>
<td>Pomocná el. energie při jmenovitém tepelném příkonu</td>
<td>W</td>
<td>66,1 *</td>
<td>66,1 *</td>
</tr>
<tr>
<td>Jmenovitý proud pojistky spotřebiče</td>
<td>A</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stupeň krytí el. částí</td>
<td>-</td>
<td>IP 41 (D)</td>
<td>IP 41 (D)</td>
</tr>
<tr>
<td>Prostředí dle ČSN 33 20 00 – 3</td>
<td>-</td>
<td>základní AA5 / ABS</td>
<td>základní AA5 / ABS</td>
</tr>
<tr>
<td>Objem expanzomatu</td>
<td>l</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Plnící přetlak expanzomatu</td>
<td>bar</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Objem vestavěného zásobníku TV</td>
<td>l</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>Udržovaná teplota TV v zásobníku</td>
<td>°C</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Objem expanzomatu TV</td>
<td>l</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Průtok odebírané TV (D - dle ČSN EN 625)</td>
<td>l.min$^{-1}$</td>
<td>16,3</td>
<td>18,6</td>
</tr>
<tr>
<td>Rozměry kotle: výška / šířka / hloubka</td>
<td>mm</td>
<td>800 / 800 / 390</td>
<td>1575 / 500 / 535</td>
</tr>
<tr>
<td>Hmotnost kotle</td>
<td>kg</td>
<td>67</td>
<td>102</td>
</tr>
</tbody>
</table>

* Pomocná elektrická energie při částečném zatížení 54,6 W, pomocná elektrická energie při pohotovostním stavu 4,4 W.
1.5 Sestava kotlů

THERM 14 KD.A, 17 KD.A, 28 KD.A

1. Kondenzační komora
2. Ventilátor
3. Teplotní sonda topení
4. Expanzní nádoba topení
5. Tlakový spínač
6. Energeticky úsporné čerpadlo
7. Plynový ventil
8. Průtokový spínač
9. Ovládací panel

THERM 14 KD.Z.A, 17 KD.Z.A, 28 KD.Z.A

1. Kondenzační komora
2. Ventilátor
3. Teplotní sonda topení
4. Expanzní nádoba topení
5. Tlakový spínač
6. Energeticky úsporné čerpadlo
7. Plynový ventil
8. Průtokový spínač
9. Ovládací panel
10. Trojcestný ventil
THERM 28 KDC.A

1 - Kondenzační komora
2 - Ventilátor
3 - Teplotní sonda topení
4 - Expanzní nádoba topení
5 - Tlakový spínač
6 - Energeticky úsporné čerpadlo
7 - Plynový ventil
8 - Průtokový spínač
9 - Ovládací panel
10 - Trojcestný ventil
11 - Deskový výměník

THERM 14 KDZ5.A, 17 KDZ5.A, 28 KDZ5.A

1 - Kondenzační komora
2 - Ventilátor
3 - Teplotní sonda topení
4 - Expanzní nádoba topení
5 - Tlakový spínač
6 - Energeticky úsporné čerpadlo
7 - Plynový ventil
8 - Zásobník TV
9 - Ovládací panel
10 - Trojcestný ventil
THERM 17 KDZ10.A, 28 KDZ10.A

1 - Kondenzační komora
2 - Ventilátor
3 - Teplotní sonda topení
4 - Expanzní nádoba topení
5 - Tlakový spínač
6 - Energeticky úsporné čerpadlo
7 - Plynový ventil
8 - Zásobník TV
9 - Ovládací panel
10 - Trojcestný ventil
2. NÁVOD K OBSLUZE

2.1 Ovládání a signalizace

2.1.1 Ovládací panel kotle

Ovládací prvky kotle jsou ukryty pod čelním plastovým krytem. Kryt otevřeme lehkým tahem za úchop v horní části, či tlakem na spodní část otvoru pro displej.

Přepínač provozních režimů - má následující polohy

- **Vypnutí kotle** – v provozu zůstávají ochranné funkce kotle (při zapojeném kotle do el. sítě a otevřeném přívodu plynu). Při volbě tohoto módu je na displeji kotle indikováno OFF, je vypnuto topení, ohřev TV a zároveň je zhasnuto podsvícení displeje.

- **Letní režim** (zapnut pouze ohřev TV, topení vypnuto)

- **Zimní režim** (zapnuto topení i ohřev TV)

- **Odblokování poruchového stavu kotle**

- **Servisní mód** (tzv. funkce „kominík“ – výkon kotle je možné plynule regulovat prostředním točítkem – levá poloha = minimální výkon a teplota, pravá poloha = maximální výkon a teplota). Tento režim slouží pouze pro servisní činnost a měření (emise, teploty spalin atd.)

- **Nastavení teploty topení** – otočný ovladač pro uživatelské nastavení výstupní teploty vody v topném systému v rozsahu 30 – 80 °C. V případě zvolené ekvitermní regulace se nastavuje ovladačem posuv topné křivky (v rozsahu ± 15 °C od ekvitermní křivky)
Nastavení teploty TV – otočný ovladač pro uživatelské nastavení požadované teploty teplé vody v rozsahu 35 - 60 °C (doporučené nastavení je 60 °C). Využito u kotlů THERM 14, 17, 28 KDZ5.A a 28 KDC.A, příp. THERM 14, 17, 28 KDZ.A při snímaní teploty TV v externím zásobníku NTC čidlem. Teplotu TV je možno zobrazit pomocí informačního menu.

Vypnutí ohřevu TV – nastavením otočného ovladače pro uživatelské nastavení výstupní teploty teplé vody do levé krajní polohy (méně než 10° dráhy) lze trvale ohřev teplé vody vyřadit z provozu.

Multifunkční tlačítka – jsou určena pro diagnostiku a nastavení parametrů kotle výhradně servisním technikem popř. k přepínání informačních údajů (viz dále)

Tlakoměr – zobrazuje měřený tlak vody v topném systému

2.1.2 LCD displej

Indikace nastavované teploty

Po otočení ovladače pro nastavení teploty topného systému nebo TV se rozbliká příslušný symbol režimu a číslicové zobrazení teploty na LCD displeji. V tomto případě je indikována hodnota právě nastavované teploty. Po ukončení nastavování přetrvá indikace nastavované teploty ještě po dobu cca 5 sekund. Následným trvalým zobrazením číslicového údaje a symbolu je opět indikována reálná teplota příslušného režimu.
Popis symbolů zobrazovaných na displeji

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Název</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.8</td>
<td>Pole zobrazení</td>
<td>Zobrazení teplot, poruchových stavů a servisních hodnot</td>
</tr>
</tbody>
</table>
| | Kohoutek | Stálý svit - kotel je v módu ohřevu TV
Bliká - zobrazení teploty TV nebo požadované teploty TV |
| | Radiátor | Stálý svit - kotel je v módu topení
Bliká - zobrazení teploty topení nebo požadované teploty topení |
| | Plamen | Stálý svit - hořák hoří
Bliká - hořák hoří během servisního módu |
| K | Křivka („K“ faktor) | Stálý svit - zvolen ekvitermní režim topení
Bliká - zobrazení „K“ faktoru, nebo společně s °C venkovní teplota |
| | Mrazová vločka | Kotel je v módu „ZIMA“ |
| | Komunikace | Stálý svit - komunikace OpenTherm+ je aktivní
Bliká - komunikace s interface kaskády je aktivní |

2.1.3 Informační menu

Tlačítka a jsou využita pro vstup a obousměrné listování v informačním menu v následujícím pořadí:

<table>
<thead>
<tr>
<th>PARAMETR</th>
<th>ZOBRAZENÍ NA DISPLEJI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Požadovaná teplota topení</td>
<td>⬠ 35 °C</td>
</tr>
<tr>
<td>Teplota topení</td>
<td>35 °C</td>
</tr>
<tr>
<td>Požadovaná teplota TV (2)</td>
<td>⬠ 35 °C</td>
</tr>
<tr>
<td>Teplota TV (2)</td>
<td>35 °C</td>
</tr>
<tr>
<td>Venkovní teplota (1)</td>
<td>16 °C</td>
</tr>
<tr>
<td>Ekvitermní křivka (faktor „K“)</td>
<td>1.6</td>
</tr>
<tr>
<td>Teplota vratné vody ze systému</td>
<td>35 °C</td>
</tr>
<tr>
<td>Rychlost ventilátoru</td>
<td>čtyřmístná hodnota otáček za minutu</td>
</tr>
</tbody>
</table>

Pokud se nestiskne tlačítko nebo po dobu 10 sekund, nebo při současném stisku tlačítek a, je informační menu ukončeno.

1. - zobrazení venkovní teploty je k dispozici pouze při připojení příslušného čidla a zvolení ekvitermní regulace
2. - při výběru ohřevu TV v externím zásobníku je zobrazení „- -“, (při dohřevu vestavěného zásobníku či solárního akumulátoru se číselná hodnota zobrazuje - viz dále)
2.1.4 Chybové hlášení

Případná porucha či jiná anomálie je pro zdůraznění signalizována blikáním podsvícení LCD displeje i zobrazeného kódu poruchy. Na první pozici displeje se zobrazuje znak „E“, na dalších pozicích pak kód poruchy s významem dle tabulky.

Zobrazení kódu poruchy na LCD displeji a její význam:

<table>
<thead>
<tr>
<th>KÓD PORUCHY</th>
<th>VÝZNA M</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01 *</td>
<td>Blokování činnosti po nezapálení plamene hořáku</td>
</tr>
<tr>
<td>E02</td>
<td>Nedodatečný průtok topné vody</td>
</tr>
<tr>
<td>E04</td>
<td>Závada na teplotní sondě topení (přerušení, nebo zkrat)</td>
</tr>
<tr>
<td>E05</td>
<td>Závada na teplotní sondě TV</td>
</tr>
<tr>
<td>E06 *</td>
<td>Blokování činnosti po přehřátí kotle (havarijní termostat)</td>
</tr>
<tr>
<td>E07</td>
<td>Závada na čidle venkovní teploty</td>
</tr>
<tr>
<td>E08</td>
<td>Porucha ventilátoru (zpětnovazební signál otáček)</td>
</tr>
<tr>
<td>E09</td>
<td>Porucha ventilátoru (otáčky mimo regulační rozsah)</td>
</tr>
<tr>
<td>E10</td>
<td>Porucha ventilátoru (otáčí se při STOP)</td>
</tr>
<tr>
<td>E12</td>
<td>Porucha nedodatečného tlaku topné vody po 4 cyklech čerpadla</td>
</tr>
<tr>
<td>E16 *</td>
<td>Vysoká teplota spalin v kondenzačním tělese</td>
</tr>
<tr>
<td>E22</td>
<td>Nízký tlak topné vody</td>
</tr>
</tbody>
</table>

* Kotel je zablokován. K opětnému prozvozování musí být proveden ruční reset přepínačem režimů.

Případný kód poruchy je zapsán do paměti procesoru, kde zůstane uložen i v případě výpadku napájení. Servisní technik tedy může kdykoliv nahlédnout do paměti a zjistit historii poruchových stavů.

2.2 Spuštění a vypnutí kotle

2.2.1 Uvedení do provozu

Kotel může uvést do provozu pouze servisní technik s oprávněním od výrobce! Seznam servisních techniků je přiložen k výrobku.

Úkony, které je potřebné provést před a při spouštění kotle

Před prvním zapálením kotle je nutno provést následující opatření:
- zkонтrolovat, zda je otopný systém naplněn vodou a kotel správně odvzdušněn
- přesvědčit se, zda jsou všechny ventily pod kotlem a v topném systému otevřeny
- otevřít plynový kohout a přezkoušet pomocí detektoru úniku plynu či pěnotvorného roztoku těsnost plynového rozvodu v kotli

Postup při prvním zapálení kotle je následující:
- otočný knoflík výstupní teploty topné vody kotle nastavit na maximum
- síťový přívod zastrčit do zásuvky a zapnout kotel přepínačem provozních režimů
- krátkodobým otočením přepínače provozních režimů do pravé krajní polohy se kotel automaticky zapálí (při odvzuďšněném plynovém přívodu)
- prověst kontrolu správné činnosti všech termostatů a ovládacích prvků
- prověst kontrolu všech funkcí kotle
- prověst seřízení spalování kotle, popřípadě upravit nastavení dle potřeb vytápěného objektu
- prověst zaškolení uživatele
2.2.2 Odstavení kotle z provozu

Kotel lze vypnout na kratší dobu přepínačem provozních režimů, popř. vypínačem na prostorovém termostatu.

Případné úplné odstavení kotle (uzavření přívodu plynu, odpojení od el. sítě) musí být provedeno s ohledem na okolní teplotu prostředí v daném ročním období! Hrozí nebezpečí zamrznutí topné soustavy či zásobníku TV a s tím spojené poškození kotle, případně jiných prvků topné soustavy.

2.3 Regulace

Kotel je vybaven vnitřními regulačními prvky na vysoké úrovni již v základním vybavení. Standardem je integrovaná ekvitermní regulace. Ohřev topného systému je možné řídit několika způsoby: regulace podle prostorové teploty ve zvolené referenční místnosti, ekvitermní regulace vytápěcí vody, kombinovaná regulace atd.

2.3.1 Provoz kotle bez prostorového termostatu či regulátoru

Kotel při tomto režimu udržuje zvolenou teplotu topné vody. Pokojový termostat ani regulátor není připojen, svorky pro jeho připojení musí být vzájemně propojeny (nastaveno z výroby).

Při tomto režimu nastavujete teplotu topné vody přímo na ovládacím panelu kotle pomocí prostorového knoflíku.

2.3.2 Provoz kotle s prostorovým termostatem

Při tomto způsobu regulace kotel udržuje zvolenou teplotu topné vody. Pokojový termostat ani regulátor není připojen, svorky pro jeho připojení musí být vzájemně propojeny (nastaveno z výroby).

Pro řízení podle prostorové teploty Thermona dodává a doporučuje celou řadu pokojových termostatů: např. PT 22, Honeywell CMR 707, CMT 727 (bezdrátová verze) aj.
Uvedené nástavbové regulace nejsou (vyjma akčních nabídek) předmětem dodávky kotle!

Popis činnosti kotle v uvedeném režimu:

Pracovní fáze kotle začíná sepnutím prostorového termostatu (termostat vyhodnotil nízkou teplotu oproti požadované) v okamžiku, kdy je ovladač režimu v pozici zimní režim. Relé třícestného ventilu je vypnuto (u kotlů s vnitřním ohřevem TV), aktivuje se chod oběhového čerpadla, zapalovací automatiky a ventilátoru. Zapálení kotle probíhá na nastavený startovací výkon. Ten je udržován po dobu 2 sekund po zapálení kotle. Poté se výkon sniží na minimum s pozitivním lineárním náběhem (cca 50 s) k bodu modulace, daným servisním nastavením max. výkonu topení. Regulace výkonu kotle v této fázi je typu PID (proporcionálně/integračně/derivační) s udržováním limitu regulace výstupní teploty. Při přechodu topného systému do zimního režimu se přehřívá čerpadla a nabíje se čerpadlo. Této fázi se využívá pro odebírání tepla z kondenzačního tělesa a ke zlepšení rozložení teplot otopných těles. Po vypnutí prostorového termostatu nebo po přepnutí voliče do módu „LETO“ je zastaveno hoření hořáků a čerpadlo je dále zapnuto po nastavenou dobu funkce doběhu čerpadla (servisní nastavení v rozsahu 0 – 10 min.). Této funkce se využívá pro odebrání tepla z kondenzačního tělesa a ke zlepšení regulace teploty v otopných systémech.

2.3.3 **Provoz kotle s využitím vestavěné ekvitermní regulace**

Tento režim je v kotli standardně dostupný, ale není aktivován! Aktivaci a prvotní nastavení regulace provádí na přání uživatele autorizovaný servisní technik.

Při ekvitermní regulaci kotel mění teplotu topné vody automaticky podle změn venkovní teploty. Tento způsob regulace je možné využít pouze s připojeným venkovním čidlem teploty. Venkovní čidlo teploty se umísťuje na nejchladnější stěnu objektu (severní příp. severozápadní) přibližně 3 m nad zemí. Čidlo nesmí být ovlivňováno žádným cizím tepelným vlivem jako např. otevřená okna, sluneční svit, větrací šachty apod.

Popis činnosti kotle v tomto režimu:

Pracovní fáze kotle jsou shodné s předchozím režimem s tím rozdílem, že teplota topné soustavy je nastavena automaticky dle venkovní teploty (zjištěné čidlem). Výpočet požadované teploty topné soustavy je funkce venkovní teploty a faktoru "K" (sklon ekvitermní krivky), který nastaví servisní technik s ohledem na lokalitu a povahu topného systému. Točítkem teploty topné vody na ovládacím panelu si uživatel nastaví dobu požadovanou tepelnou pohodu (korekce posuvu ekvitermní křivky v rozsahu ± 15 °C topné vody). Ekvitermní křivka je modifikována pro standardní topný systém s radiátory.

V případě poruchy čidla venkovní teploty je tento stav signalizován poruchou E07 a kotel pokračuje v provozu s teplotou topné soustavy dle nastavení jako v předchozím režimu (bez ekvitermní regulace).

Postup nastavení:

Při nastavení ekvitermní regulace je třeba rozlišovat sklon a posuv ekvitermní krivky. Při nastavení sklonu ekvitermní křivky platí následující pravidlo: při špatných tepelně izolačních vlastnostech objektu měníme parametr sklonu křivky směrem k vyššímu hodnotám (křivku zvedáme), při dobré tepelné izolaci můžeme parametr snížit (křivku naopak více pokládáme).

Nastavení sklonu křivky provádí autorizovaný servisní technik v servisním menu řídící automatiky kotle!
Z výše uvedeného vyplývá, že točítkem pro nastavení teploty topění na ovládacím panelu se v tomto režimu kotle nepřímo nastavuje požadovaná teplota vytápěcího prostoru. Počátečně (výrobě) je nastavena ekvitermní křivka „K“ = 1,6. Výchozí uživatelská nastavení otočného ovladače teploty topení je doprostřed nastavovací dráhy (ukazatel nahoru, což odpovídá posuvači křivky 0 °C). Po kontrole teploty vytápěného prostoru (cca za 24 hodin) lze provést upřesněné nastavení dle vašich požadavků na tepelnou pohodu. Vlivem ekvitermní regulace budou nadále kompenzovány změny venkovní teploty a nastavená hladina teploty vytápěného prostoru bude udržována automaticky na konstantní hodnotě.

Využitím tohoto režimu regulace kotle docílíme dalšího snížení provozních nákladů při zlepšení tepelné pohody (kontinuální oříz otopných těles). V neposlední řadě oceníme tuto možnost jako předregulaci primárního topného okruhu při použití zónové regulace (směsovacími ventily) atd.

Při aktivované ekvitermní regulaci se mění význam funkce prostředního točítka na ovládacím panelu kotle. Označeným točítkem se v tomto případě nastavuje posuv topné křivky (v rozsahu ±15 °C od servisního technika nastavené ekvitermní křivky).

Vypočtená teplota topné vody je omezena na max. 80 °C. Pokud se vypočtená teplota pohybuje v rozsahu 20 – 35 °C je požadovaná teplota omezena na minimální teplotu kotle, tj. 30 °C a je spuštěna funkce periodického spouštění kotle ve fixním intervalu 15 minut a proměnnou dobu chodu na 35 °C dle vztahu:

\[
T_{on} (\min) = 15 - T_{off} ; z toho T_{off} (\min) = 35 - \text{vypočtená ekvitermní teplota}
\]

Pokud je vypočtená ekvitermní teplota ≤ 20 °C, zůstane kotel vypnutý.

Poznámka:
- \(T_{on}\) = interval zapnutí kotle
- \(T_{off}\) = zbytkový interval vypnutí kotle do fixních 15 minut

Graf průběhů ekvitermních křivek (nulový posuv)
2.3.4 Provoz kotle s nadřazeným ekvitermním regulátorem

Pro zajištění „plnohodnotné“ ekvitermní regulace (včetně nastavení časových programů atd.) doporučujieme využít inteligentní programovatelný regulátor CR 04, PT 59 příp. Therm RC 03, který průběžně komunikuje s mikroprocesorem kotlové automaticky. Dochází tak k přenosu informací nejen o požadované teplotě topného systému v závislosti na prostorové a venkovní teplotě, ale i k zobrazování provozních informací o kotli (pracovní režim, výkon, teploty, případné poruchy atd.). Tento systém se vyznačuje mnoha nastavitelnými a zobrazovatelnými parametry pro optimální řízení topného zařízení s modulací výkonu kotle.

2.3.5 Ohřev teplé vody (TV)

Kotle THERM KDC.A, KDZ.A, KDZ5.A a KDZ10.A jsou standardně uzpůsobeny pro ohřev teplé vody průtokovým způsobem či ohřevem v externím nebo vestavěném nepřímotopném zásobníku.

2.3.5.1 Zásobníkový ohřev TV - POPIS ČINNOSTI (kotle KDZ.A, KDZ5.A, KDZ10.A)

Je-li termostat zásobníku TV sepnutý, začíná pracovní fáze ohřevu zásobníku. Je sepnuto relé třícestného ventilu a pokud kotel běžel ve fázi ohřevu topného systému, hořák a čerpadlo jsou zastavené.
Poté, co proběhne přestavení třícestného ventilu (v časovém intervalu 8 sekund), je spuštěno čerpadlo. Po sekvenci kontroly bezpečnostních prvků je povoleno zapalování hořáku.
Od detekce přítomnosti plamene je udržován startovací výkon kotle ještě po době 2 sekund a poté přechází do fáze plynulé modulace výkonu s PID regulací při žádané hodnotě teploty ohřevu 80 °C. Po celou dobu ohřevu probíhá kontrola limitů regulace výstupní teploty. Při případném převyšení nad 86 °C je hoření zastaveno a zůstává v činnosti oběhové čerpadlo.
K opětnému zapalení dojde při poklesu teploty pod 80 °C. Pracovní fáze v režimu ohřevu TV končí vypnutím termostatu zásobníku TV.
V případě souběhu požadavků má režim ohřevu TV přednost před ohřevem topného systému.

Informativní schéma připojení nepřímotopného zásobníku k plynovému kotli

1 – Plynový kotel THERM 14, 17 , 28 KDZ.A
2 – Nepřímotopný zásobník
3 – Odvzdušňovací ventil
4 – Topný systém
5 – Přívod studené vody
6 – Připojení termostatu zásobníku
7 – Výstup TV
8 – Vypouštěcí ventil

U – Uzávěr na přívodu studené vody
Z – Zkušební kohout
K – Zpětný ventil
P – Pojistný ventil
M – Tlakoměr
E – Expanzní nádoba (doporučená)
2.3.5.2 Průtokový ohřev TV – POPIS ČINNOSTI (kotle KDC.A)

Pracovní fáze tohoto režimu kotle začíná sepnutím průtokového spínače TV. Rozběhne se ventilátor, aktivuje se chod oběžného čerpadla a zapalovací automatika. Kotel zapálí na startovací výkon a následně (cca 10 sekund po zapálení kotle) zvyší výkon kotle na maximum, aby co možná nejdříve zvyšil výstupní teplotu TV na nastavenou hodnotu. Tuto teplotu udržuje regulací výkonu typu PID. Po 10 sekundách od ukončení odběru TV se zastaví čerpadlo.

Ohřev TV má v případě souběžných požadavků přednost před topením.

2.3.6 Ohřev teplé vody v akumulačním zásobníku ve spojení se solárními panely

Plynové kondenzační kotle THERM 14, 17, 28 KD.A a KDZ.A je s výhodou možné využít pro dohřev solárního systému s takzvané akumulačním zásobníkem. Naše geografické podmínky neumožňují provozovat solární systém bez doplňkového (záložního) zdroje tepla, kterým je v našem případě plynový kotel. Kotel se samostatně stará o vytápění a v případě požadavku je schopen prioritně dohřát solární akumulátor TV.

Popis činnosti kotle v tomto režimu:

Tento pracovní mód má stejné chování jako „Zásobníkový ohřev TV“ popsaný v jedné z předcházejících kapitol s tím rozdílem, že teplota v akumulačním zásobníku TV je snímaná teplotní sondou na místo termostatu zásobníku. Nastavení požadované teploty TV je umožněno buď z komunikační linky nebo otočným ovladačem TV na panelu kotle. Sonda teploty TV musí být připojená a funkční, jinak je ohřev TV zastaven. Spojením kontaktu na svorkách termostatu zásobníku (v tomto případě nevyužitěho) je vnutena teplota ohřevu na 60°C (nezávisle na nastavení teploty TV). Tato funkce slouží k ochraně proti možnému množení škodlivých bakterií typu Legionella.
2.4 Vybrané ochranné funkce kotle

Antiblokační funkce
Po 24 hodinách nečinnosti je spuštěno čerpadlo na dobu 30 sekund, aby se zabránilo jeho případnému zablokování (zalehnutí). Po 24 hodinách nečinnosti je na dobu 10 sekund sepnuto relé třícestného ventilu (pokud je jím kotel vybaven) ze stejného důvodu. V případě požadavku na ohřev (topení příp. TV) během vykonávání této funkce je antiblokační funkce okamžitě ukončena a spuštěn požadavek. Antiblokační funkce je v činnosti také ve stavu blokování činnosti kotle i v pozici ovladače v módu „VYPNUTO“ (pokud je kotel stále zapojen v elektrické síti).

Protimrazová ochrana
Kotel je vybaven systémem protimrazové ochrany, který chrání kotel (nikoliv topný systém, zásobník a rozvody TV) před zamrznutím. Protimrazová ochrana se aktivuje při poklesu teploty v kotli pod 6 °C. Spustí se čerpadlo, kotel se zapaluje a ohřívá topný okruh minimálním výkonem do 30 °C. Při této teplotě je hoření zastaveno a čerpadlo pokračuje v chuđ po dobu nastavené funkce doběhu čerpadla. Pokud je kotel ve stavu blokace hoření (porucha), je aktivováno pouze čerpadlo. Protimrazová funkce je aktivní i s voličem v pozici ovladače v režimu „VYPNUTO“ nebo v „LETNÍM REZIMU“.

Kontrola průtoku (kontrola provozu čerpadla)
Před každým zapálením kotle je provedena kontrola průtokového spínače, který vyhodnocuje správnou funkci kotlového čerpadla. Opětovná kontrola průtokového spínače je aktivována v případě, že do 15 sekund chodu čerpadla neseprávné průtokový spínač. Čerpadlo se zastaví a po 45 sekundách je proveden další pokus spuštění kotle. Tento jev se opakuje 4x s následnou signalizací poruchy E12. Pokud doba nečinnosti čerpadla před opětovným spuštěním kotle přesáhla 30 minut, je první interval chodu čerpadla prodloužen na 180 sekund. Pro obnovení činnosti kotle je nutné vyvnout a opětovně zapnut na otočném ovladačem výběru režimu, příp. vypnutím a opětovným zapojením síťového napájení.

Anticyklace
Funkce, která zabraňuje cyklování kotle v režimu topení, kdy při provozním vyvnutí kotle není dovoleno opětovné zapálení kotle dříve, než dohromady nastavený tzv. anticyklací čas (z výroby nastaveno 5 minut). Tato funkce je nejvíce využívána v těch otopenných systémech, kde maximální tepelná ztráta daného objektu odpovídá nejnižší hranici výkonového rozsahu kotle.

Doběh čerpadla
Doběh čerpadla je standardně z výroby nastaven na 5 minut. Po zhasnutí hořáků kotle způsobeném rozpojením pokojového termostatu je čerpadlo nadále v chuđ po dobu nastaveného doběhu čerpadla. V případě, že je kotel v zimním režimu provozován bez pokojového termostatu, pak je čerpadlo sepnuto stále.

Doběh ventilátoru
Po ukončení hoření je ventilátor v provozu ještě 30 s při udržování otáček odpovídajících startovacímu výkonu (odebrání zbytku spalin ze spalovací komory).

Upozornění: Veškeré změněné bezpečnostní a ochranné funkce jsou v činnosti pouze tehdy, je-li kotel připojen k elektrickému napětí!

S ohledem na požadavek zvýšené kontroly činnosti mikroprocesoru je vždy jednou za 24 hodin provozu proveden vnucený reset elektroniky s následnou inicializací (projeví se krátkodobým přerušením činnosti kotele a zhasnutím údajů na displeji podobné jako při zapnutí síťového přívodu kotle do zásuvky).

! Změnu anticyklacího času v rozsahu 0 - 10 minut může provádět pouze autorizovaný servisní technik!

! Změnu doběhu čerpadla při provozu s pokojovým termostatem v rozmezí 0 - 10 minut může provádět pouze autorizovaný servisní technik.

! Upozornění: Veškeré změněné bezpečnostní a ochranné funkce jsou v činnosti pouze tehdy, je-li kotel připojen k elektrickému napětí!

24
2.5 Údržba a servis

Pravidelná údržba je velmi důležitá pro spolehlivý chod, pro dosažení vysoké životnosti a také účinnosti spalování. Vlastník nebo provozovatel plynového zařízení je povinen dle vyhlášky ČÚBP a ČBU č. 21/1979 Sb. a ČSN 386405 zajistit každoroční prohlídku servisní organizací. Servisní organizace provede např. kontrolu ovládacích a zabezpečovacích prvků kotle, kontrolu těsnosti plynového a vodního rozvodu, popř. vyčištění horáku a výměnu od spálených prachových částic apod. Pro bezchybný provoz otopné soustavy je také třeba pravidelně kontrolovat výchozí tlak vody ve studeném stavu. V případě snížení tlaku pod 0,8 bar je nutno provést dopouštění topného systému.

2.5.1 Dopouštění topného systému

Dopouštění vody do topné soustavy (dotlakování systému) je možné provádět přes dopouštěcí ventil, který je integrován přímo na kotli. Voda pro dopouštění musí splňovat určité parametry, viz kapitola 3.8.

Při dopouštění je potřebné zohlednit tyto podmínky:

- a) tlak užitkové vody přiváděné do kotle musí být vyšší než tlak vody v topné soustavě (v opačném případě může dojít k proudění topné vody zpět do vodovodního řádu)
- b) dopouštění vody je nutné provádět výlučně za studeného stavu (teplota topné vody v kotli max. do 35 °C)

Postup dopouštění vody do topného systému:

1. Odpojte kotel od sítě el. napětí
2. Ručně pomalu otevřete dopouštěcí ventil a sledujte tlakoměr na ovládacím panelu kotle
3. Doplňte tlak systému na potřebnou hodnotu (dle topného systému, doporučeno 1,0 - 1,5 bar)
4. Uzavřete ventil dopouštění
5. Připojte kotel do el. sítě a opět kotel uveďte do provozu

2.6 Záruka a záruční podmínky

Výrobce neručí za mechanické poškození jednotlivých komponentů nešetřeným zacházením, za škody způsobené neodborným zásahem do elektroniky při seřizování a připojování nadstavbových regulací, za škody způsobené použitím jiných součástí a komponentů náhradou za originální používané výrobek. Záruka se dále nevztahuje na závady způsobené nedodržením závazných upozornění a podmínek stanovených v jednotlivých oddílech tohoto manuálu. Záruka se rovněž nevztahuje na nenormalizované poměry v rozvodných sítích (kolísání el. napětí – zejména přepěťové špičky, tlak a čistota plynu apod.), na závady způsobené při provozu kotel, které ovšem nevznikly jeho bohužel nechcením, nevzhledný odvod spalin, nečistoty ve spalovaném vzduchu, nečistoty v topném systému či v okruhu kotel - zásobník, poškození vnějšími vlivy, mechanické poškození, skladování, přepravu a závady vzniklé živelnou pohromou.

V těchto případech může servisní organizace požadovat na zákazníkovi úhradu za opravu.

THERMONA, spol. s r.o. poskytuje záruku dle podmínek uvedených na záručním listě dodaného spolu s výrobkem.

Podmínky pro uplatnění záruky:

2. Dokladovat veškeré záznamy o provedených záručních opravách a ročních kontrolách kotlů na příloze tohoto návodu
3. Doložit vyplněný a potvrzený záruční list a Protokol o uvedení do provozu výrobků THERM
3. NÁVOD K INSTALACI

3.1 Základní pokyny pro montáž kotle

Závěsné kondenzační kotle THERM jsou určené pro provoz v běžných teplovodních topných soustavách.

Povinnosti montážní firmy je provést před instalací kontrolu zda:

- typ kotle souhlasí s objednaným
- volba kotle byla pro dané použití správná (druh plynu, topná soustava, odkouření, sání vzduchu)
- dodávka je úplná

3.2 Kompletnost dodávky

Závěsné kotle THERM se dodávají kompletně smontovány. Všechny součásti kotle jsou před zkomplokováním výrobcem překontrolovány a nastaveny. Každý kotel je přezkoušen na těsnost vodního okruhu, těsnost plynového okruhu a je nastavena a přezkoušena činnost regulačních a pojistných prvků.

Standardní dodávka kotle obsahuje:

1. Kotel
2. Návod na instalaci, obsluhu a údržbu kotle
3. Servisní síť
4. Záruční list (3 kopie)
5. Protokol o uvedení do provozu výrobku THERM
6. Přihláška k registraci do programu prodloužené záruky
7. Závěsná lišta včetně upevňovacích prvků

Příslušenství:

Dle požadavku je možné objednat potřebné příslušenství (odkouření, regulace, venkovní čidlo apod.). Podrobnější informace najdete v Katalogu výrobků a příslušenství nebo na www.thermona.cz.

K odkouření kotlů v provedení turbo se musí použít výhradně odkouření dodávané výrobcem kotle. Pouze za této podmínky kotel vykazuje udávané parametry spalování, výkonu, účinnosti atd.

V případě pochybností nebo dotázek kontaktujte před montáží kotle výrobcе nebo dodavatele.

3.3 Umístění kotle

Kotle lze instalovat v bytovém i nebytovém prostoru (hlučnost vyhovuje vyhlášce MZ č.13/1977 Sb.).

Upozornění:

K obrysu kotle se nesmí přibližovat předměty ve smyslu ČSN 06 1008 (klasifikované dle ČSN EN 13501-1+A1:2010) na menší vzdálenost jak: **100 mm** z materiálů B - nesnadno hořlavých, C1 - těžce hořlavých nebo C2 - středně hořlavých **200 mm** z materiálů C3 - lehce hořlavých (např. dřevovláknité desky, celulózové hmoty, polyuretan, polystyrén, polyetylén, PVC apod.) Bezpečná vzdálenost hořlavých předmětů od kotle je 50 mm, od kouřovodu a kontrolního průzoru 200 mm. Blíže nelze předměty z hořlavých materiálů umísťovat. Stěna, na které bude kotel zavěšen, musí být z nehořlavého materiálu.

Před započetím prací, které mohou mít za následek změnu prostředí v prostoru instalovaného kotle (např. práce s nátěrovými hmotami, lepidly atd.), je nutné vypnout kotel přepínačem režimů (poloha ukazatelem na „0“) a odpojit jej z elektrické sítě (vytáhnutím síťové vidlice ze zásuvky).

3.4 Zavěšení kotle

Závěsné kondenzační kotle THERM 14, 17, 28 KD.A, KDZ.A, KDZ5.A a THERM 28 KDC.A se připevní na zeď pomocí závěsné lišty, dodávané spolu s kotlem podle obrázků níže.

Postup zavěšení kotle:

1. Důkladně rozměřte pozici zavěšení kotle (dle obrázku s rozměry)
2. Přiložte závěsnou lištu na požadované místo a pomocí vodováhy lištu vyrovnejte
3. Vyznačte tužkou místa, ve kterých se budou vrtat otvory
4. Lištu odejměte a pomocí vrtáku Ø 10 mm vyvrtejte potřebné otvory
5. Vložte hmoždinky do otvorů a následně lištu pomocí přiložených šroubů upevněte
6. Zavěste kotel na závěsnou lištu
7. Nainstalujte potrubí pro odtah spalin a přívod vzduchu. Prostor mezi potrubím a průrazem ve zdivu vyplňte nehořlavým materiálem (pamatujte při tom na zachování rezebíratelnosti odkouření).

V případě montáže na zeď s nižší nosností se doporučuje upevnění konzultovat se stavebním technikem. Kolem kotle je nutné z důvodu servisních prohlídek či případného servisního zásahu ponechat manipulační prostor tak, aby bylo možné na kotli snadno a bezpečně pracovat rukama i běžným ručním nářadím.
3.5 Připojení kotle na teplovodní systém

Vlastní připojení kotlů k topnému rozvodu musí být provedeno takovým způsobem, aby nebyly silově namáhány připojovací vývody kotle a zároveň nemohlo docházet k jeho zavzdušíování.

Vzhledem k tomu, že se jedná o teplovodní průtočný kotel, který je vybaven vlastním čerpadlem, je nutno řešit jeho připojení k topné soustavě projektem s vazbou na výpočty hydraulických poměrů celé sestavy. Z duvodů optimálního využití kondenzačního režimu kotle je vhodné dimenzovat otopnou sestavu na nízké teploty ($\Delta t = 50/30 ^\circ C$). Minimální přetlak otopného systému 0,8 baru. Doporučujeme udržovat tlak topné vody v soustavě v rozmezí 1,0 - 1,5 bar.
3.5.1 Rozměry a připojení

THERM 14 KD.A, KDZ.A

PŘIPOJENÍ KOTLŮ

<table>
<thead>
<tr>
<th>KOTLE</th>
<th>ROZMĚR</th>
<th>TYP ZÁVITU</th>
<th>14 KD.A</th>
<th>14 KDZ.A</th>
<th>14 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vstup vratné vody</td>
<td>G 3/4" vnější</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Výstup topné vody</td>
<td>G 3/4" vnější</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vstup plynu</td>
<td>G 3/4" vnější</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Výstup pojistného ventilu</td>
<td>G 1/2" vnitřní</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Odvod kondenzátu</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Vstup topné vody ze zásobníku</td>
<td>G 3/4" vnější</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Výstup topné vody do zásobníku</td>
<td>G 3/4" vnější</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vstup užitkové vody</td>
<td>G 1/2" vnější</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Výstup užitkové vody</td>
<td>G 1/2" vnější</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cirkulace užitkové vody</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
THERM 17 KD.A, KDZ.A

THERM 17 KD.Z.A

THERM 17 KD.ZS.A

<table>
<thead>
<tr>
<th>PŘIPOJENÍ KOTLŮ</th>
<th>TYP KOTLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROZMĚR</td>
</tr>
<tr>
<td>Vstup vratné vody</td>
<td>G 3/4“ vnější</td>
</tr>
<tr>
<td>Výstup topné vody</td>
<td>G 3/4“ vnější</td>
</tr>
<tr>
<td>Vstup plynu</td>
<td>G 3/4“ vnější</td>
</tr>
<tr>
<td>Výstup pojistného ventilu</td>
<td>G 1/2“ vnitřní</td>
</tr>
<tr>
<td>Odvod kondenzátu</td>
<td></td>
</tr>
<tr>
<td>Vstup topné vody ze zásobníku</td>
<td>G 3/4“ vnější</td>
</tr>
<tr>
<td>Výstup topné vody do zásobníku</td>
<td>G 3/4“ vnější</td>
</tr>
<tr>
<td>Vstup užitkové vody</td>
<td>G 1/2“ vnější</td>
</tr>
<tr>
<td>Výstup užitkové vody</td>
<td>G 1/2“ vnější</td>
</tr>
<tr>
<td>Cirkulace užitkové vody</td>
<td></td>
</tr>
</tbody>
</table>
Připojení kotlů

Typ kotle

<table>
<thead>
<tr>
<th>Rozměr závitu</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Závit 28 KD.A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Závit 28 KDZ.A</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Závit KDC.A</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Závit KDZ5.A</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vstup vratné vody

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/4"</td>
<td>vnější</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Výstup topné vody

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/4"</td>
<td>vnější</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Vstup plynu

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/4"</td>
<td>vnější</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Výstup pojištěného ventilu

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1/2"</td>
<td>vnitřní</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Odvod kondenzátu

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/4"</td>
<td>vnější</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vstup topné vody ze zásobníku

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/4"</td>
<td>vnější</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Výstup topné vody do zásobníku

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/4"</td>
<td>vnější</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

Vstup užitkové vody

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1/2"</td>
<td>vnější</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Výstup užitkové vody

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1/2"</td>
<td>vnější</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Cirkulace užitkové vody

<table>
<thead>
<tr>
<th>Typ</th>
<th>Závit</th>
<th>28 KD.A</th>
<th>28 KDZ.A</th>
<th>28 KDC.A</th>
<th>28 KDZ5.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>
Připojení kotlů

<table>
<thead>
<tr>
<th>TYP KOTLE</th>
<th>ROZMĚR</th>
<th>TYP</th>
<th>17 KDZ10.A</th>
<th>28 KDZ10.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vstup vratné vody</td>
<td>G 3/4" vnější</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Výstup topné vody</td>
<td>G 3/4" vnější</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vstup plynu</td>
<td>G 3/4" vnější</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vstup užitkové vody</td>
<td>G 1/2" vnější</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Výstup užitkové vody</td>
<td>G 1/2" vnější</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Církulace užitkové vody</td>
<td>G 1/2" vnější</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uvedené rozměry od podlahy jsou variabilní +/- 10mm z důvodu použití stavěcích nožic.

THERM 17 KDZ10.A, 28 KDZ10.A
3.5.2 Grafy připojovacích přetlaků topné vody (na výstupu topné vody)

Upozornění: Křivky použitelných připojovacích přetlaků topné vody jsou zpracovány na čerpadlo *Wilo Yonos PARA RSL 15/6-3* na nejvyšší regulační stupeň.

![Graf připojovací přetlak THERM 14 KD.A, KDZ.A, KDZ5.A (s omezením by-passem)](image1)

![Graf připojovací přetlak THERM 17 a 28 KD.A (s omezením by-passem)](image2)

![Graf připojovací přetlak THERM 17 a 28 KDC.A, KDZ.A, KDZ5.A, KDZ10.A (s omezením by-passem)](image3)

Vzhledem k předávanému výkonu kotle a odporovým vlastnostem výměníku nedoporučujeme výkon čerpadla snižovat.
Systém potrubí musí být veden tak, aby se zabránilo vzniku vzduchových bublin a usnadnilo se odvzdušňování. Odvzdušňovací prvky by měly být osazeny na všech nejvyšší položených částech topného systému a dále pak na všech otopných tělesech.

Před vyzkoušením a uvedením do provozu musí být dle ČSN 06 0310 součástí montáže provedeno důkladné propláchnutí topného systému do úplně čistého stavu. Pro zabránění zanesení nečistot do systému kotle musí být vstup vratné vody z topného systému do kotle bezpodmíněně osazen vhodným filtrem a odkalovačem. Filtr a odkalovač je potřeba v pravidelných intervalech kontrolovat a čistit.

Topná soustava musí být provedena v souladu s ČSN 06 0830 - Tepelné soustavy v budovách - Zabezpečovací zařízení a s ČSN 06 0310 – Tepelné soustavy v budovách - Projektování a montáž.

Výrobce vyžaduje:
- do sání čerpadla namontovat filtr a odkalovací zařízení (např. Spirovent Kal)
- ve vytápěcích systémech s termostatickými ventily osadit přepouštěcí ventil
- v nejnižších místech soustavy v bezprostřední blízkosti kotle umístit kohout pro napouštění a vypouštění teplonošného média z topné soustavy a pro odkalování
- osadit na výstup z kotle a na nejvyšší bod topného systému odvzdušňovací zařízení

Výrobce doporučuje:
- systém naplnit měkkou vodou dle ČSN 07 7401
- oddělit kotel na vstupu i výstupu uzavírací armaturou (viz ČSN 06 0830), aby v případě kontroly, opravy kotle nebo čištění filtru nebylo nutné vypouštět celou soustavu
- při provozu sejmout z armatur ovládací páčky a zabezpečit je proti manipulaci

3.5.3 Expanzní nádoba
Kondenzační kotle THERM jsou standardně vybaveny integrovanou expanzní nádobou horního systému o objemu 6 l popř. 7 l. Uvedený objem expanzní nádoby je ve většině případů dostatok pro pokrytí expanze topné vody ve standardních topných systémech s deskovými otopnými tělesy. V některých starších topných systémech s větším objemem topné vody či systémech s podlahovým vytápěním bývá zapotřebí osadit ještě doplňující expanzní nádobu.

3.5.4 Použití nemrznoucích směsí
Nedoporučujeme do topných systémů napouštět nemrznoucí směsí vzhledem k jejich vlastnostem nevhodným pro provoz kotle. Jedná se zejména o snížení předávání tepla, velkou objemovou roztažnost, stárnutí, poškození pryžových částí kotle.

3.5.5 Pojistný ventil
Ve spodní části kotle je umístěn pojistný ventil. Při provozu kotle může dojít za určitých okolností k propouštění vody či úniku páry z pojistného ventilu. Z tohoto důvodu je vhodné nainstalovat na výstup poj. ventilu vhodný svod, který bude vyveden do odpadního systému.

V žádném případě se nesmí manipulovat s pojistným ventilem za provozu kotle!

3.6 Připojení kotle THERM 14, 17, 28 KDZ5.A a 17, 28 KDZ10.A na rozvod užitkové vody
Připojení přívodu užitkové vody musí být provedeno s doplněním všech bezpečnostních přístrojů uvedených v národních předpisích (v ČR je to ČSN 060830). Kvalita vody v okruhu TV má podstatný vliv na možnost zanesení nepřímotopného výměníku v zásobníku TV. Musí proto splňovat parametry jakosti dle vyhl. MZd. 376/2000 Sb. (pitná voda) hlavně v ukazatelích tvrdosti (součet látkových koncentrací vápníku a hořčíku < 2.5 mmol/l). V případě pochybností nebo neověřených parametrů (vlastní studný) doporučujeme použít automatické dávkovací zařízení k úpravě vody.
3.7 Připojení kotle k rozvodu plynu

Kotel je určen k provozu na zemní plyn o výhřevnosti 9 – 10,5 kWh/m³ a jmenovitým tlaku v rozvodné síti 20 mbar a dále (po nezbytných úpravách) na propan (pouze kotle THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A) o jmenovitým tlaku v rozvodné síti 37 mbar.

3.7.1 Přestavba na jiná paliva

Při přestavbě kotle z hlediska změny plynu se musí provést změna clony plynu, která je umístěna ve šroubení mezi výstupem plynu z plynové armatury a mixérem. Dále je třeba provést kontrolu, popř. změnu nastavení příslušných parametrů souběhu směšování na plynové armatuře. Nastavuje se množství CO₂ ve spalinách v rozsahu minimálního a maximálního výkonu kotle dle analyzátora spalin.

Tyto činnosti může bezpodmíněně provést pouze vyškolený servisní pracovník s oprávněním od výrobce. Po seřízení kotle musí být nastavené členy k předvolbě zajištěny proti neoprávněnému průřezu. Za škody, způsobené nekvalifikovaným nastavením, výrobce neodpovídá.

3.8 Plnění a vypouštění topného systému

Během plnění topného systému musí být kotel odpojen od el. sítě vytažením síťové vidlice ze zásuvky. Plnění musí probíhat pomalu, aby mohl unikat vzduch příslušnými odvzdušňovacími ventily. Voda pro první naplnění i pro dopouštění musí být dle ČSN 07 7401 čirá, bezbarvá, bez suspendovaných látek, oleje a chemicky agresivních příměsí, nesmí být kyselá (pH nemůže být nižší než 7), s minimální uhličitanovou tvrdostí (max. 3,5 mval/l). V případě úpravy tvrdosti je nutné použít výrobcem schválené přípravky.

3.8.1 Postup napouštění topného systému

1. Zkontrolujte a seřiďte tlak v expanzní nádobě podle předepsaného statického tlaku v systému
2. Otevřete napouštěcí ventil topné soustavy a na manometru kotle sledujte vzrůstající tlak v topné soustavě
3. Po naplnění topného systému by měl tlak být v rozmezí 1,0 - 1,5 bar
4. Odvzdušněte pečlivě všechny radiátory (při cirkulaci vody nemůže být slyšet vzduchové bubliny)
5. Opět zkontrolujte tlak vody v systému – po odvzdušnění bude pravděpodobně nutné topný systém dotlakovat
6. Zkontrolujte, zda jsou uzavřeny odvzdušňovací ventily na topných tělesech, automatické odvzdušňovací ventily v kotli zůstávají mírně pootevřené!

Při nedodržení výše uvedených požadavků se nevztahuje záruka na poškozené komponenty!

3.8.2 Dopouštění vody do topného systému

Dopouštění vody do systému je popsáno v kapitole „Údržba a servis“ v části „Návod k obsluze“.

3.8.3 Vypouštění vody z topného systému

Úplné vypuštění vody z celé topné soustavy je třeba řešit systémovým vypouštěcím ventilem umístěným v nejnižším bodě topné soustavy.
3.9 Odvod kondenzátu

Kotel je vybaven zápachovou uzávěrkou (sifonem), kterou je nutné před spuštěním kotle zavodnit cca 100 ml vody. Na odvod kondenzátu z kotle je nutné nejprve napojit neutralizační zařízení a následně odvést kondenzát dál do kanalizace. Vypouštění kondenzátu do kanalizace se řídí národními nebo regionálními (místními) předpisy.

Odvod potrubí musí být provedeno se spádem min. 5° od kotle do kanalizace a nesmí být jakkoli blokováno (při ucpání odvodu kondenzátu dojde k rezonanci spalovací komory kotle).

Rozbor kondenzátu

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Měrná jednotka</th>
<th>14 kW</th>
<th>17 kW</th>
<th>28 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>3,0</td>
<td>2,7</td>
<td>3,0</td>
</tr>
<tr>
<td>Dusitany</td>
<td>mg.l⁻¹</td>
<td>< 0,002</td>
<td>< 0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Měď (Cu)</td>
<td>mg.l⁻¹</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>0,17</td>
</tr>
<tr>
<td>Olovo (Pb)</td>
<td>mg.l⁻¹</td>
<td>< 0,01</td>
<td>< 0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Kadmium (Cd)</td>
<td>mg.l⁻¹</td>
<td>< 0,001</td>
<td>< 0,005</td>
<td>0,005</td>
</tr>
<tr>
<td>Zinek (Zn)</td>
<td>mg.l⁻¹</td>
<td>0,022</td>
<td>0,1</td>
<td>0,2</td>
</tr>
</tbody>
</table>

3.10 Řešení odtahu spalin

Odtah spalin těchto typů kotlů musí být řešen pomocí výrobcem dodávaného certifikovaného systému odkouření. Z hlediska kontroly spalinové cesty je nutné odtah spalin vybavit vhodným revizním otvorem. Odtah spalin a případné připojení na komín je nutno provádět dle ČSN 734201. Konkrétní provedení odtahu spalin musí být navrženo a zpracováno v projektu zapojení kotle při respektování standardních pravidel pro případný odvod kondenzátu. Horizontální potrubí je nutné instalovat se spádem 2° od konce směrem do kotle, aby bylo zamezení vytékání kondenzátu (a případného zámrzu) z konce odtahu do okolí.

Pro kondenzační kotle THERM jsou schváleny tyto následující způsoby odvodu spalin:

a) koaxiální odkouření o průměru 60/100 mm
b) koaxiální odkouření o průměru 80/125 mm
c) dělené odkouření o průměru 2 x 80 mm

Povolené maximální délky odkouření:

<table>
<thead>
<tr>
<th>Průměr odkouření</th>
<th>Maximální délka - horizontálně</th>
<th>Maximální délka - vertikálně</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 kW</td>
<td>17 kW</td>
</tr>
<tr>
<td>60/100 mm</td>
<td>10 m</td>
<td>4 m</td>
</tr>
<tr>
<td>80/125 mm</td>
<td>20 m</td>
<td>15 m</td>
</tr>
<tr>
<td>2 x 80 mm</td>
<td>20 m + 20 m (sání + výdech)</td>
<td>13 m + 13 m (sání + výdech)</td>
</tr>
</tbody>
</table>

Minimální délka odkouření je 1 m. První koloeno v případě horizontálního odkouření je již započítáno do maximální délky odkouření. Druhé a případně další koloeno zkracují maximální délku o:

0,5 m - koloeno 45°
0,75 m - koloeno 90°

⚠️ **Maximální celková tlaková ztráta odkouření je 95 Pa.**
3.12 Připojení kotle na elektrickou síť

Instalaci zásuvky, připojení prostorového termostatu a servis elektrické části kotle může provádět pouze osoba s odpovídající odbornou elektrotechnickou kvalifikací dle vyhl. č. 50/1978 Sb.

3.12.1 Připojení pokojového termostatu

Pro ovládání kotle prostorovým termostatem lze použít pouze takový termostat, který má beznapěťový kontakt, tzn. že nepřivádí do kotle žádné cizí napětí. Prostorový termostat je třeba propojit s kotle dvoužilovým vodičem. Doporučený průřez pro připojení pokojového termostatu pro měděný slaněný vodič (lanko) je od 0,5 do 1,0 mm².

Svorkovnice pro připojení pokojového termostatu je umístěna na řídící elektronice kotle (viz el. schéma zapojení kotle). Z výroby je vybavena propojkou. Propojka se vyjíma pouze v případě připojení prostorového termostatu! Svorkovnice je přístupná po sejmutí vnějšího krytu, vyklopení a následném demontování zadní části ovládacího panelu.
3.12.2 Připojení pokojového regulátoru s komunikací OpenTherm+

Připojení inteligentního pokojového regulátoru se provádí obdobně jako připojení klasického prostorového termostatu. Regulátor se připojuje na stejnou svorku. Nikdy však nelze připojit oba typy regulátorů současně!

Technické doporučení při propojování regulátoru s komunikací OpenTherm+ s kotlem

Propojovací kabel slouží k napájení regulátoru i k přenosu signálu vzájemné komunikace protokolem OpenTherm+ mezi automatikou kotle a regulátorem.

Počet vodičů vedení : 2
Maximální délka vedení : 50 metrů
Maximální odpor vedení : 2 x 5 Ohm
Polarita : nepolarizované připojení (vodiče jsou záměnné)

Pro zamezení rušení komunikace je nezbytné použít kroucený pár nebo stíněný pár vodičů! Propojovací kabel nesmí mít souběh ani pokud možno křížení se silovým vedením! Stínění kabelu se musí vzájemně propojit a uzemnit nejlépe na faston ukostření k automatice kotle (stínění nesmí být zemněno na kostru v několika místech!). Vhodný je např. kabel SYKFY.

3.13 Varianty instalace kotle

Provedení:
C 13 - Sousose horizontální provedení s vyústěním do obvodové zdi. Potrubí může být i zdvojené, vyústění je buď soustředné nebo tak blízko umístěné (umístění uvnitř čtverce o straně 50 cm), že podléhá stejným povětrnostním podmínkám.

C 33 - Sousose vertikální provedení s vyústěním na střechu. Potrubí může být i zdvojené, vyústění je buď soustředné nebo tak blízko umístěné (umístění uvnitř čtverce o straně 50 cm a vzdálenost mezi rovinami dvou otvorů musí být menší než 50 cm), že podléhá stejným povětrnostním podmínkám.

C 43 - Oddělené připojení ke dvěma potrubím společné šachty. Vyústění šachet je buď soustředné nebo tak blízko umístěné (umístění uvnitř čtverce o straně 50 cm), že podléhá stejným povětrnostním podmínkám.

C 53 - Oddělené potrubí s vyústěním do obvodové zdi nebo na střechu, v zónách rozdílných tlaků, ale v žádném případě do dvou protilehlých obvodových zdí.

C 83 - Oddělené připojení s odvodem spalin do samostatného nebo společného komína. Přívod spalovacího vzduchu je z obvodové zdi.
4. DOPLŇUJÍCÍ INFORMACE PRO SERVIS

4.1 Plynová armatura SIEMENS VGU 86 - nastavení

SIEMENS VGU 86 je plynová armatura s poměrovou regulací vzduch / plyn. Je osazena dvěma solenoidovými ventily pro blokování prostupu plynu při nečinnosti kotle. Regulační systém pracuje v závislosti na zpětnovazebním signálu tlaku plynu z mixeru. Kromě uzavíratelných měřicích nástavců vstupního, výstupního a středního tlaku plynu jsou přítomny prvky pro nastavení správného poměru vzduch plyn v celém rozsahu regulace výkonu kotle.

Nastavení parametrů plynové armatury tj. regulačního počátku a nastavení poměru směsi provede servisní technik při spuštění kotle. Tento úkon je bezpodmíněně nutné provést klíčem TORX T15 dle emisních hodnot spalin naměřených servisním analyzátorem!

El. schéma zapojení konektoru cívek solenoidů

Plynová armatura obsahuje dva solenoidové ventily EV1 (solenoid vstupu plynu) a EV2 (solenoid regulačního systému). Cívky jsou v konektoru připojovacího kabelu zapojeny paralelně (tzn. zapínají se obě současně). Napájecí napětí cívek je 230 V st. (střídavých).

Nastavení plynové armatury provádí výhradně pracovník autorizované servisní organizace!
4.2 Elektrické schéma zapojení

HDIMS 20-TH20
Upozornění na likvidaci obalu a výrobku po skončení jeho životnosti:
Veškeré použité materiály plně harmonizují s požadavky stanovenými v §10 zákona č. 185/2001 Sb. a §6 zákona č. 477/2001 Sb.
Obal výrobku se běžně odevzdává do sběrného papírového odpadu, přebalová fólie do sběrných kontejnerů na plasty.
Části kotle z oceli, mědi a slitin se odevzdávají do tříděného kovového odpadu sběrných surovin.
Tepelná izolace spalovací komory je zdravotně nezávadná a likviduje se v běžném domovním odpadu.
Pro skladování je třeba zajistit standardní skladovací podmínky (neagresivní a bezprašné prostředí, rozmezí teplot 5 až 50 °C, vlhkost vzduchu do 75 %, se zamezením biologických vlivů, otřesů a vibrací).

Pro dodržení ekologických parametrů výrobku je nutné zajistit každoroční prohlídku a údržbu. Součástí této prohlídky je i kompletní vyčištění kotle a seřízení spalování.

5. ZÁZNAM O PROVEDENÍ ZÁRUČNÍCH I POZÁRUČNÍCH OPRAVÁCH A ROČNÍCH KONTROL

<table>
<thead>
<tr>
<th>Provedený úkon</th>
<th>Smluvní organizace</th>
<th>Podpis zákazníka</th>
<th>Datum záznamu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44
Informační list výrobku
dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 14 KD.A ; THERM 14 KDZ.A

Konstrukční kotel
- ANO

Nízkoteplotní (**) kotel
- NE

Kotel typu B1
- NE

Kombinovaný ohřívač
- NE

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída sezonné energetické účinnosti vytápění</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{nom}</td>
<td>15</td>
<td>kW</td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon

- Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*) $P_4 = 13,40$ kW
- Při 30 % jmenovitého tepelného výkonu a v nízkoteplotním režimu (**) $P_1 = 2,60$ kW

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sezonné energetická účinnost vytápění</td>
<td>η_s</td>
<td>90</td>
<td>%</td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečná účinnost

- Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*) $\eta_4 = 87,50$ %
- Při 30 % jmenovitého tepelného výkonu a v nízkoteplotním režimu (**) $\eta_1 = 95,30$ %

Spotřeba pomocné elektrické energie

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Při plném zatížení</td>
<td>e_{max}^el</td>
<td>0,063</td>
<td>kW</td>
</tr>
<tr>
<td>Při částečném zatížení</td>
<td>e_{max}^el</td>
<td>0,048</td>
<td>kW</td>
</tr>
<tr>
<td>V pohotovostním režimu</td>
<td>P_{st}</td>
<td>0,003</td>
<td>kW</td>
</tr>
</tbody>
</table>

Další položky

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepelná ztráta v pohotovostním režimu</td>
<td>P_{st}</td>
<td>0,075</td>
<td>kW</td>
</tr>
<tr>
<td>Spotřeba elektrické energie zápalovacího hořáku</td>
<td>P_{el}</td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Emise oxidů dusíku</td>
<td>NO_x</td>
<td>30</td>
<td>mg/kWh</td>
</tr>
<tr>
<td>Hladina akustického výkon ve vnitřním prostoru</td>
<td>L_{WA}</td>
<td>57</td>
<td>dB</td>
</tr>
</tbody>
</table>

U kombinovaných ohřívačů:

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denní spotřeba elektrické energie</td>
<td>Q_{sec}</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>AEC</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Energetická účinnost ohřevu vody</td>
<td>η_{wh}</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Denní spotřeba paliva</td>
<td>Q_{sat}</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba paliva</td>
<td>AFC</td>
<td></td>
<td>GJ</td>
</tr>
</tbody>
</table>

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).

www.therona.cz

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika
Informační list výrobku
dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 14 KDZ5.A

Kondenzační kotel: ANO

Nízkoteplotní (**) kotel: NE

Kotel typu B1: NE

Kombinovaný ohřívač: ANO

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída sezonní energetické účinnosti vytápění</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{rev}</td>
<td>15</td>
<td>kW</td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon

Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*) P_4 | 13,40 | kW |

Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**) P_1 | 2,60 | kW |

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sezonní energetická účinnost vytápění</td>
<td>η_s</td>
<td>90</td>
<td>%</td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečná účinnost

Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*) η_4 | 87,50 | % |

Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**) η_1 | 95,30 | % |

Spotřeba pomocné elektrické energie

Při plném zatížení e_{el} | 0,063 | kW |

Při částečném zatížení e_{el} | 0,048 | kW |

V pohotovostním režimu P_{el} | 0,003 | kW |

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Další položky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teplá ztráta v pohotovostním režimu</td>
<td>P_{el}</td>
<td>0,075</td>
<td>kW</td>
</tr>
</tbody>
</table>

Spotřeba elektrické energie zapalovacího hořáku P_{el} | kW |

Emise oxidů dusíku NO_x | 30 | mg/kWh |

Hladina akustického výkonu ve vnitřním prostoru I_{max} | 57 | dB |

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>U kombinovaných ohřívačů:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denní spotřeba elektrické energie</td>
<td>Q_{ele}</td>
<td>0,202</td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>Q_{AEC}</td>
<td>44</td>
<td>kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetická účinnost ohřevu vody</td>
<td>η_{wh}</td>
<td>82</td>
<td>%</td>
</tr>
<tr>
<td>Denní spotřeba paliva</td>
<td>Q_{fue}</td>
<td>23,979</td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba paliva</td>
<td>AFC</td>
<td>18</td>
<td>GJ</td>
</tr>
</tbody>
</table>

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).

www.thermona.cz

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika
Informační list výrobku
dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 17 KD.A ; THERM 17KDZ.A

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída sezonní energetické účinnosti vytápění</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{net}</td>
<td>17</td>
<td>kW</td>
</tr>
<tr>
<td>U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Při jmenovitěm tepelném výkonu a ve vysokoteplotním režimu (*)</td>
<td>P_4</td>
<td>16,00</td>
<td>kW</td>
</tr>
<tr>
<td>Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**)</td>
<td>P_1</td>
<td>2,84</td>
<td>kW</td>
</tr>
<tr>
<td>Spotřeba pomocné elektrické energie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Při plném zatížení</td>
<td>$e_{l,max}$</td>
<td>0,062</td>
<td>kW</td>
</tr>
<tr>
<td>Při částečném zatížení</td>
<td>$e_{l,av}$</td>
<td>0,053</td>
<td>kW</td>
</tr>
<tr>
<td>V pohotovostním režimu</td>
<td>P_{st}</td>
<td>0,003</td>
<td>kW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sezonní energetická účinnost vytápění</td>
<td>η_s</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečná účinnost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Při jmenovitěm tepelném výkonu a ve vysokoteplotním režimu (*)</td>
<td>η_4</td>
<td>88,38</td>
<td>%</td>
</tr>
<tr>
<td>Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**)</td>
<td>η_1</td>
<td>95,49</td>
<td>%</td>
</tr>
<tr>
<td>Další položky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spotřeba elektrické energie zapalovacího hořáku</td>
<td>P_{ign}</td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Emise oxidů dusíku</td>
<td>NOx</td>
<td>31</td>
<td>mg/kWh</td>
</tr>
<tr>
<td>Hladina akustického výkonu ve vnitřním prostoru</td>
<td>l_{wa}</td>
<td>55</td>
<td>dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denní spotřeba elektrické energie</td>
<td>Q_{ec}</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>AEC</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Energetická účinnost ohřevu vody</td>
<td>η_{wh}</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Denní spotřeba paliva</td>
<td>Q_{oil}</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba paliva</td>
<td>AFC</td>
<td></td>
<td>GJ</td>
</tr>
</tbody>
</table>

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).
Informační list výrobku

dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 28 KD.A ; THERM 28 KDZ.A

Kondenzační kotel: ANO

Nízkoteplotní () kotel:** NE

Kotel typu B1: NE

Kombinovaný ohřívač: NE

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Třída sezonní energetické účinnosti vytápění</th>
<th>A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jmenovitý tepelný výkon</th>
<th>(P_{rev})</th>
<th>28</th>
<th>kW</th>
</tr>
</thead>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon

Při jmenovitém tepelného výkonu v ohřívači a ve vysokoteplotním režimu (*)

\[P_4 \] = 26,00 kW

Při 30% jmenovitého tepelného výkonu a v nízkoteplotném režimu (**) \[P_1 \] = 4,80 kW

Spotřeba pomocné elektrické energie

Při plném zatížení \(e_{el,m} \) = 0,066 kW

Při částečném zatížení \(e_{el,xx} \) = 0,052 kW

V pohotovostním režimu \(P_{el,xx} \) = 0,005 kW

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sezonní energetická účinnost vytápění</th>
<th>(\eta_s)</th>
<th>91</th>
<th>%</th>
</tr>
</thead>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečná účinnost

Při jmenovitém tepelném výkonu v ohřívači a ve vysokoteplotním režimu (*) \[\eta_4 \] = 86,90 %

Při 30% jmenovitého tepelného výkonu a v nízkoteplotném režimu (**) \[\eta_1 \] = 96,70 %

Spotřeba pomocné elektrické energie

Při plném zatížení \(e_{el,m} \) = 0,066 kW

Při částečném zatížení \(e_{el,xx} \) = 0,052 kW

V pohotovostním režimu \(P_{el,xx} \) = 0,005 kW

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
</table>

| Další položky | | |
|---------------|-------------|-----|-----|

| Tepelná ztráta v pohotovostním režimu | \(P_{bly} \) | 0,080 | kW |

Spotřeba elektrické energie zapalovacího hořáku \(P_{el,xx} \)

Emise oxidů dusíku \(NO_x \) = 47 mg/kWh

Hladina akustického výkonu ve vnitřním prostoru \(l_{nx} \) = 56 dB

U kombinovaných ohřívačů:

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
</table>

| Třída energetické účinnosti ohřevu vody | | |
|--|-------------|-----|-----|

| Deklarovaný zátěžový profil | | |
|-----------------------------|-------------|-----|-----|

<table>
<thead>
<tr>
<th>Denní spotřeba elektrické energie</th>
<th>(Q_{elec})</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>(AEC)</td>
<td>kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energetická účinnost ohřevu vody</th>
<th>(\eta_{hh})</th>
<th>%</th>
</tr>
</thead>
</table>

| Denní spotřeba paliva | \(Q_{fuel,xx} \) | kWh |
| Roční spotřeba paliva | \(AFC \) | GJ |

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).
Informační list výrobku
dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 28 KDC.A

Kondenzační kotel: ANO
Nízkoteplotní () kotel:** NE
Kotel typu B1: NE
Kombinovaný ohřívač: ANO

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída sezonní energetické účinnosti vytápění</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon (P_{\text{nax}})</td>
<td>28</td>
<td>kW</td>
<td></td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon

Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*): \(P_4 \) kW
Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**): \(P_1 \) kW

Sezonní energetická účinnost vytápění \(\eta_s \) %

[Sezonní energetická účinnost vytápění je měřena v podmínkách, kdy je kotl užíván pro vytápění vnitřních prostorů a kombinovaných ohřívačů. Je měřena jako poměr mezi účinným tepelným výkonem a jmenovitým tepelným výkonem. (*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače. (** Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).]

Spotřeba pomocné elektrické energie

Při plném zatížení \(e_{\text{l\text{max}}} \) kW
Při částečném zatížení \(e_{\text{l\text{max}}} \) kW

V pohotovostním režimu \(P_{\text{stby}} \) kW

Další položky

Tepelná ztráta v pohotovostním režimu \(P_{\text{stby}} \) kW
Spotřeba elektrické energie zapalovacího hořáku \(P_{\text{pali}} \) kW
Emise oxidů dusíku NOx mg/kWh
Hladina akustického výkonu ve vnitřním prostoru \(L_{\text{WA}} \) dB

U kombinovaných ohřívačů:

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denní spotřeba elektrické energie (Q_{\text{elec}}) kWh</td>
<td>0,152</td>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>AEC</td>
<td>33</td>
<td>kWh</td>
</tr>
</tbody>
</table>

Energetická účinnost ohřevu vody \(\eta_{\text{wh}} \) %

Denní spotřeba paliva \(Q_{\text{elec}} \) kWh
Roční spotřeba paliva AFC GJ

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika

www.thermona.cz

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika
Informační list výrobku
dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: **THERM 17 KDZ5.A**

Kondenzační kotel: ANO

Nízkoteplotní (***) kotel: NE

Kotel typu B1: NE

Kombinovaný ohřívač: ANO

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída sezónní energetické účinnosti vytápění</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{nom}</td>
<td>17</td>
<td>kW</td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon

Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*): P_{s}, 16,00 kW

Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**): P_{1}, 2,84 kW

Spotřeba pomocné elektrické energie

Při plném zatížení $e_{el_{max}}$, 0,062 kW

Při částečném zatížení $e_{el_{max}}$, 0,053 kW

V pohotovostním režimu $P_{el_{id}}$, 0,003 kW

U kombinovaných ohřívačů:

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denní spotřeba elektrické energie</td>
<td>Q_{elec}</td>
<td>0,221</td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>AEC</td>
<td>49</td>
<td>kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetická účinnost ohřevu vody</td>
<td>η_{wh}</td>
<td>81</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sezónní energetická účinnost vytápění</td>
<td>η_{s}</td>
<td>90</td>
<td>%</td>
</tr>
</tbody>
</table>

Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*): η_{s}, 88,38%

Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**): η_{1}, 95,49%

Další položky

Spotřeba elektrické energie zapalovacího hořáku $P_{el_{id}}$, 0,075 kW

Emise oxidů dusíku NO_{x}, 31 mg/kWh

Hladina akustického výkonu ve vnitřním prostoru L_{WA}, 55 dB

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).

www.thermona.cz

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika

50
Informační list výrobku
dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: **THERM 17KDZ10.A**

Kondenzační kotel: **ANO**

Nízkoteplotní (***) kotel: **NE**

Kotel typu B1: **NE**

Kombinovaný ohřívač: **ANO**

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{nom}</td>
<td>17</td>
<td>kW</td>
<td>Sezonní energetická účinnost vytápění</td>
<td>η_s</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon</td>
<td></td>
<td></td>
<td></td>
<td>Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*)</td>
<td>η_{a}</td>
<td>88,38</td>
<td>%</td>
</tr>
<tr>
<td>Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (***)</td>
<td>P_{a}</td>
<td>16,00</td>
<td>kW</td>
<td>Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (***)</td>
<td>η_{a}</td>
<td>95,49</td>
<td>%</td>
</tr>
<tr>
<td>Spotřeba pomocné elektrické energie</td>
<td>e_{el}</td>
<td>0,062</td>
<td>kW</td>
<td>Tepelná ztráta v pohotovostním režimu</td>
<td>P_{stby}</td>
<td>0,075</td>
<td>kW</td>
</tr>
<tr>
<td>Při plném zatížení</td>
<td></td>
<td></td>
<td></td>
<td>Spotřeba elektrické energie zapalovacího hořáku</td>
<td>P_{el}</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>Při částečném zatížení</td>
<td>e_{el}</td>
<td>0,053</td>
<td>kW</td>
<td>Emise oxidů dusíku</td>
<td>NO_x</td>
<td>31</td>
<td>mg/kWh</td>
</tr>
<tr>
<td>V pohotovostním režimu</td>
<td>P_{el}</td>
<td>0,003</td>
<td>kW</td>
<td>Hladina akustického výkonu ve vnitřním prostoru</td>
<td>I_{a}</td>
<td>55</td>
<td>dB</td>
</tr>
<tr>
<td>Další položky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U kombinovaných ohřívačů:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td></td>
<td></td>
<td></td>
<td>Energetická účinnost ohřevu vody</td>
<td>η_{ah}</td>
<td>81</td>
<td>%</td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td></td>
<td>XL</td>
<td></td>
<td>Denní spotřeba paliva</td>
<td>Q_{a}</td>
<td>24,251</td>
<td>kWh</td>
</tr>
<tr>
<td>Denní spotřeba elektrické energie</td>
<td>Q_{elec}</td>
<td>0,221</td>
<td>kWh</td>
<td>Roční spotřeba paliva</td>
<td>AFC</td>
<td>18</td>
<td>GJ</td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>AEC</td>
<td>49</td>
<td>kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návrhová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návrhová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).

www.thermona.cz
Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika
Informační list výrobku

dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 28 KDZ5.A

<table>
<thead>
<tr>
<th>Kondenzační kotel:</th>
<th>ANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nízkoteplotní (**) kotel:</td>
<td>NE</td>
</tr>
<tr>
<td>Kotel typu B1:</td>
<td>NE</td>
</tr>
<tr>
<td>Kombinovaný ohřívač:</td>
<td>ANO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída sezónní energetické účinnosti vytápění</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{nat}</td>
<td>28</td>
<td>kW</td>
</tr>
<tr>
<td>U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Při jmenovitě tepelném výkonu a ve vysokoteplotním režimu (*)</td>
<td>P_4</td>
<td>26,00</td>
<td>kW</td>
</tr>
<tr>
<td>Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**)</td>
<td>P_1</td>
<td>4,80</td>
<td>kW</td>
</tr>
<tr>
<td>Spotřeba pomocné elektrické energie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Při plném zatížení</td>
<td>e_{el}</td>
<td>0,066</td>
<td>kW</td>
</tr>
<tr>
<td>Při částečném zatížení</td>
<td>e_{el}</td>
<td>0,052</td>
<td>kW</td>
</tr>
<tr>
<td>V pohotovostním režimu</td>
<td>P_{el}</td>
<td>0,005</td>
<td>kW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sezónní energetická účinnost vytápění</td>
<td>η_s</td>
<td>91</td>
<td>%</td>
</tr>
<tr>
<td>Další položky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spotřeba elektrické energie zapalovacího hořáku</td>
<td>P_{el}</td>
<td>0,080</td>
<td>kW</td>
</tr>
<tr>
<td>Emise oxidů dusíku</td>
<td>NO_x</td>
<td>47</td>
<td>mg/kWh</td>
</tr>
<tr>
<td>Hladina akustického výkonu ve vnitřním prostoru</td>
<td>L_{WA}</td>
<td>56</td>
<td>dB</td>
</tr>
</tbody>
</table>

Třída energetické účinnosti ohřevu vody	A		
Deklarovaný zátěžový profil	XL		
Denní spotřeba elektrické energie	Q_{elec}	0,167	kWh
Roční spotřeba elektrické energie	AEC	37	kWh
Energetická účinnost ohřevu vody	η_{wh}	80	%
Denní spotřeba paliva	Q_{fuel}	24,889	kWh
Roční spotřeba paliva	AFC	19	GJ

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).

www.thermona.cz

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika
Informační list výrobku

dle požadavků nařízení komise EU č. 811/2013 a 813/2013

Model/y: THERM 28 KDZ10.A

Kondenzační kotel: ANO

Nízkoteplotní () kotel:** NE

Kotel typu B1: NE

Kombinovaný ohřívač: ANO

Třída sezónní energetické účinnosti vytápění

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmenovitý tepelný výkon</td>
<td>P_{max}</td>
<td>28</td>
<td>kW</td>
</tr>
</tbody>
</table>

U kotlových ohřívačů pro vytápění vnitřních prostorů a kotlových kombinovaných ohřívačů: užitečný tepelný výkon

- Při jmenovitém tepelném výkonu a ve vysokoteplotním režimu (*) P_{v} = 26,00 kW
- Při 30% jmenovitého tepelného výkonu a v nízkoteplotním režimu (**) P_{f} = 4,80 kW

Spotřeba pomocné elektrické energie

- Při plném zatížení $e_{\text{i, max}}$ = 0,066 kW
- Při částečném zatížení $e_{\text{i, min}}$ = 0,052 kW
- V pohotovostním režimu P_{h} = 0,005 kW

U kombinovaných ohřívačů:

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída energetické účinnosti ohřevu vody</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deklarovaný zátěžový profil</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energetická účinnost ohřevu vody

<table>
<thead>
<tr>
<th>Položka</th>
<th>Označení</th>
<th>Hodnota</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denní spotřeba elektrické energie</td>
<td>Q_{elec}</td>
<td>0,167</td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba elektrické energie</td>
<td>AEC</td>
<td>37</td>
<td>kWh</td>
</tr>
<tr>
<td>Denní spotřeba paliva</td>
<td>Q_{fuel}</td>
<td>24,889</td>
<td>kWh</td>
</tr>
<tr>
<td>Roční spotřeba paliva</td>
<td>AFC</td>
<td>19</td>
<td>GJ</td>
</tr>
</tbody>
</table>

(*) Vysokoteplotním režimem se u kondenzačních kotlů rozumí návratová teplota 60 °C na vstupu do ohřívače a vstupní teplota 80 °C na výstupu z ohřívače.

(**) Nízkou teplotou se u kondenzačních kotlů rozumí návratová teplota 30 °C, u nízkoteplotních kotlů 37 °C a u ostatních ohřívačů 50 °C (na vstupu do ohřívače).

www.thermona.cz

Thermona, spol. s r.o., Stará osada 258, 664 84 Zastávka u Brna, Česká republika
7. OVĚDĚNÍ O JAKOSTI A KOMPLETNOSTI VÝROBku

Plynové kondenzační kotle THERM

Typové označení:
- THERM 14 KD.A
- THERM 14 KDZ.A
- THERM 14 KDZ5.A
- THERM 17 KD.A
- THERM 17 KDZ.A
- THERM 17 KDZ5.A
- THERM 17 KDZ10.A
- THERM 28 KD.A
- THERM 28 KDZ.A
- THERM 28 KDZ5.A
- THERM 28 KDZ10.A
- THERM 28 KDC.A

Výrobní číslo:

THERM 14 KD.A, KDZ.A, KDZ5.A
- certifikát přezkoušení typu podle ES směrnice pro spotřebiče plynných paliv 2009/142/ES č. E-30-00327-13
- certifikát přezkoušení typu podle ES směrnice na účinnost 92/42/EHS č. E-30-00328-13

THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A
- certifikát přezkoušení typu podle ES směrnice pro spotřebiče plynných paliv 2009/142/ES č. E-30-00804-13
- certifikát přezkoušení typu podle ES směrnice na účinnost 92/42/EHS č. E-30-00805-13

THERM 28 KD.A, KDZ.A, KDZ5.A, KDZ10.A, KDC.A
- certifikát přezkoušení typu podle ES směrnice pro spotřebiče plynných paliv 2009/142/ES č. E-30-00806-13
- certifikát přezkoušení typu podle ES směrnice na účinnost 92/42/EHS č. E-30-00807-13

Technická kontrola

datum: ..

razítko a podpis: ...